首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of dairy science》1986,69(3):643-648
Retentates from ultrafiltration of pasteurized whole milk at three volume concentration ratios, 1.4:1, 1.7:1 and 2:1. were made into Mozzarella cheese by direct acidification with 10% glacial acetic acid.Excellent melting Mozzarella cheese was attained and increases in cheese yield were related directly to retentate concentration. Yield efficiency, based on casein recovery, was higher in retentate cheese than in controls. Cheese from ultrafiltered whole milk using low concentrated retentates generally showed improved physical properties over that of nonretentate control whole milks. Composition of direct acidified cheese from whole milk retentates when compared with federal standards of identity fitted those of low moisture Mozzarella rather than Mozzarella.  相似文献   

2.
Ultrafiltration technology was used for the production of direct acidified cheese. Process parameters were optimized for cheese manufacture from whole milk retentates at 4:1 volume concentration ratio. Sensory evaluation indicated that cheese from ultrafiltration was preferred equally to traditional manufacture when the cheese was of similar composition, while citric acid was the preferred acidulent. An increase in cheese yield of 3.3% and an increase in yield on dry matter mass basis of 14.7% was achieved by use of ultrafiltration. Yield efficiencies based on protein, fat or total solids increased with retentate concentration.  相似文献   

3.
《Journal of dairy science》1986,69(8):2011-2017
Whole milk retentates, prepared by ultrafiltration of pasteurized milk to volume concentration ratios of 1.5:1, 1.75:1, and 2:1, were made into low moisture Mozzarella cheese using thermophilic bacterial cultures.Good melting properties, increased output per vat, and higher yield efficiency based on total solids were observed in retentate over control cheese. Optimum retentate volume concentration ratio was 1.75:1. Cheese from 2:1 volume concentration ratio retentates had desirable qualities but were firmer with greater whey fat losses than cheese from non-retentate controls or 1.5:1, and 1.75:1 volume concentration ratio retentates. Composition of cheese made from whole milk retentates using thermophilic starters complied with US federal standards of identity for low moisture Mozzarella cheese.  相似文献   

4.
Transporting whole milk retentates of ultrafiltration to a distant large industrial Cheddar cheese making site resulted in 16 lots of Cheddar cheese from vats containing 2,546 to 16,360 kg of cheese milk. Whole milk retentates concentrated by ultrafiltration to 4.5:1 were added to cheese milks to give mixtures concentrated 1.2:1 and 1.3:1 with approximately 20 and 30% more protein and fat, respectively, than in unsupplemented control whole milks or unsupplemented commercial reference milks.Gross composition of Cheddar cheese made from commercial reference, control, and retentate-supplemented milk generally showed no major differences. Yield increased in cheese made from retentate-supplemented milk. Yield efficiency per kilogram total solids rose in retentate cheese over controls but not among commercial reference, control, and retentate lots based on per kilogram fat or total protein. Milk components were higher in wheys from retentate cheeses, but loss of components per kilogram cheese obtained generally showed lower values in whey from retentate cheese.General quality of retentate Cheddar cheese was equal to that of reference unsupplemented commercial cheese and higher than unsupplemented control Cheddar cheeses. It appears technically feasible to ultrafilter milk at one site, such as the farm, collecting station, or specialized center, and transport it to an industrial site for Cheddar cheese making.  相似文献   

5.
The influence of ultrafiltration of whole and skim milk on rennetability in the course of white pickled cheese manufacturing was investigated. Concentrating factors of the milk were selected as 3x, 4x, 5x and 5.5x. The renneting properties of the unconcentrated milk and the retentates (skim and whole milk ultrafiltration retentates) were explained. The white cheese produced from unconcentrated whole milk via a traditional industrial method was compared with the white cheese produced by whole milk retentate (5.5-fold). The cheeses manufactured from retentate were salted using different methods, i.e. dry salting, brine salting and salt addition before renneting. The effect of salting method on the texture of UF-cheese was determined after three months storage. It was suggested that producing of white pickled cheese from whole milk retentate (full-concentrated) was more suitable than manufacturing from skim milk retentate and was than better the conventional method which uses unconcentrated milk, actually.  相似文献   

6.
《Journal of dairy science》1986,69(6):1484-1490
Cheddar cheese was manufactured from whole milk and whole milk retentate using retentate starter made from milk ultrafiltered to 4:1 (vol/vol). One percent retentate starter added to whole milk and 2% starter to 1.7:1 whole milk retentate gave excellent quality cheese. Additionally, a 1% retentate starter added to whole milk gave approximately 3% more cheese. A 2% retentate starter added to 1.7:1 whole milk retentate gave 4% more cheese, reduced cheese making time over that required for control whole milk cheese, and made acid ripening of milk before renneting unnecessary. Starter concentrations above 1% in whole milk and above 2% in whole milk retentates produced some bitterness in the cheese.  相似文献   

7.
The impact of concentrating whole milk by reverse osmosis prior to Cheddar cheese making was studied. Heat treated, standardized, whole milk was reduced in volume by 0, 5, 10, 15, and 20% prior to Cheddar cheese manufacture. Milk solids at various milk volume reductions were 11.98, 12.88, 13.27, 14.17, and 15.05%, respectively. Permeates contained only traces of organic matter and would not create a significant by-product handling problem for a cheese plant. Solids content of the whey from cheese making increased with increasing milk concentration. Proximate compositions of reverse osmosis cheeses were comparable to control cheeses. Fat losses decreased, and fat retained in the cheese increased with increasing milk solids concentration. Improved fat recovery in the cheese was related to the amount of mechanical homogenization of milk fat during the concentration process. Actual, composition adjusted, and theoretical cheese yields were determined. Increased retention of whey solids and improved fat recovery gave cheese yield increases of 2 to 3% above expected theoretical yields at 20% milk volume reduction. Water removal from whole milk prior to Cheddar cheese manufacture gave increased productivity and cheese yield without requiring different cheese-making equipment or manufacturing procedures.  相似文献   

8.
The effects of using cold ultrafiltered (UF) retentates (both whole and skim milk) on the coagulation, yield, composition, and ripening of Parmesan cheese were investigated. Milks for cheese making were made by blending cold UF retentates with partially skimmed milk to obtain blends with 14.2% solids and a casein:fat ratio of 1.1. Cutting times, as selected by the cheese-maker, were approximately 15 and approximately 20 min for experimental and control milks, respectively. Storage modulus values at cutting were similar, but yield stress values were significantly higher in UF retentate standardized milks. Cheese yields were significantly higher in UF retentate standardized milks (approximately 12%) compared with control milk (cream removed) (approximately 7 to 8%). Significantly higher protein recoveries were obtained in cheeses manufactured using cold UF retentates. There were no differences in the pH and moisture contents of the cheeses prior to brining, and there was no residual lactose or galactose left in the cheeses. Using UF retentates resulted in a significant reduction in whey volume as well as a higher proportion of protein in the solids of the whey. Proteolysis, free fatty acids, and sensory properties of the cheeses were similar. The use of milk concentrated by cold UF is a promising way of improving the yield of Parmesan cheese without compromising cheese quality. The question remaining to be answered by the cheesemaker is whether it is economical to do so.  相似文献   

9.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   

10.
Reconstituted creamed retentates of ultrafiltration were converted to ripened cheese by Cheddar manufacturing principles. Initially, the fresh cheeses resembled normal Cheddar but during ripening were transformed into Gouda-Swiss types with pH rising rapidly from 5.2 to approximately 6.0.Cheese composition was affected by amount of full fat retentate in reconstituted mixtures. As total milk solids increased in reconstituted retentates, cheese moisture decreased and cheese volume rose to high yields. Cheese yield efficiency showed 1.21 to 1.32 kg cheese per kg total solids. Rennet curd of higher total solids retentates formed more rapidly than normal, and curds were harder. Whey from retentate reconstituted cheeses showed relatively low ash and fat even from cheeses made with high retentate. Soluble protein in 2-mo-old cheeses held at 10° C was lower in cheese from retentates of high solids.  相似文献   

11.
Pasteurized whole milk was concentrated by reverse osmosis (RO) on a pilot plant scale. The retentate was then used to produce cheddar cheese following the traditional method but using 50% less starter and 60% less rennet. The biochemical composition of the RO cheese was close to that of ordinary cheddar. The resulting non uniformity of the fresh curd as well as the granular texture of the cheese were probably due to the high lactose content of the retentate. Contamination of the milk from bacteria already present in the reverse osmosis system caused the high coliform level of the cheese.  相似文献   

12.
《Journal of dairy science》1986,69(10):2551-2557
Low moisture Mozzarella cheese curd was made from cheese milks supplemented to 1.2:1 and 1.4:1 fat and protein with 4.5:1 retentates of ultrafiltration stretched and molded in hot 10% brine.Retentate supplementation improved cheese yield and yield efficiencies. Retentate-supplemented cheese had higher protein and fat and lower moisture than controls. Maximum total solids and yields were obtained from cheese stretched in hot brine. Such cheese showed more uniform salt distribution but slightly lower salt concentration than controls. More loss of fat occurred in whey in control cheese stretched in hot water. Hot brine stretching of low moisture Mozzarella cheese made from retentate-supplemented milk suggests savings in time, space, equipment, and labor without detrimental effects on cheese color and meltability.  相似文献   

13.
Skim milk was concentrated by reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) and the retentates were spray‐dried. The resulting powders were reconstituted to 25% TS and sterilised to evaluate their heat stability. Reverse osmosis led to maximum retention of calcium, a fall in pH for its retentate and its reconstituted powder. All RO powders produced a weak gel on heating. Some calcium was lost during NF and a greater amount during UF. Their resulting reconstituted powders had a higher pH than those produced by RO. Powders produced by UF showed poor heat stability. Only one powder produced by NF showed good heat stability. This could be improved by addition of stabilisers at appropriate addition rates.  相似文献   

14.
《Journal of dairy science》1986,69(11):2797-2802
Nonultrafiltered fresh whole raw and heated milks and their retentates concentrated by ultrafiltration to 2.07:1 volume concentration ratio were stored at 4.5 and −20°C and periodically scored for flavor quality.Nonultrafiltered whole raw milks were unclean, fermented, and rancid after 4 to 5 d. Nonultrafiltered heated milks over a 7 to 8-d period developed strong oxidized flavors. Milk retentates produced at 54°C for 120 min showed little or no flavor deterioration after 7 to 8 d at 4.5°C. In the same period at 4.5°C, raw milks from four trials showed 20 defects, heated milks 11 defects and 2.07:1 retentates 2 defects. Milks and retentates held frozen at −20°C for 2 mo showed greater deterioration than split samples held at 4.5°C, but whole milk retentates ultrafiltered to approximately 2:1 volume concentration ratio and stored frozen for 2 mo still displayed good to very good flavor.Thiobarbituric acid values of milks and retentates of ultrafiltration held 4 d at 4.5°C confirmed the presence of strong oxidized flavor in nonultrafiltered heated milks and its virtual absence in whole milk retentates.  相似文献   

15.
Low-moisture, part-skim (LMPS) Mozzarella cheeses were made from concentration factor (CF) 6, 7, 8, and 9, pH 6.0 skim milk microfiltration (MF) retentates using a vatless cheese-making process. The compositional and proteolytic effects of cheese made from 4 CF retentates were evaluated as well as their functional properties (meltability and stretchability). Pasteurized skim milk was microfiltered using a 0.1-microm ceramic membrane at 50 degrees C to a retentate CF of 6, 7, 8, and 9. An appropriate amount of cream was added to achieve a constant casein:fat ratio in the 4 cheesemilks. The ratio of rennet to casein was also kept constant in the 4 cheesemilks. The compositional characteristics of the cheeses made from MF retentates did not vary with retentate CF and were within the legal range for LMPS Mozzarella cheese. The observed reduction in whey drained was greater than 90% in the cheese making from the 4 CF retentates studied. The development of proteolytic and functional characteristics was slower in the MF cheeses than in the commercial samples that were used for comparison due to the absence of starter culture, the lower level of rennet used, and the inhibition of cheese proteolysis due to the inhibitory effect of residual whey proteins retained in the MF retentates, particularly high molecular weight fractions.  相似文献   

16.
Ultrafiltration has been successfully used in the manufacture of chhana, an Indian milk product used as a base material for making sweets. The ultrafiltration behaviour of pasteurized whole milk versus severely heated whole milk, as regards the flux, energy requirement for concentration and retention coefficients, was studied. Chhana was manufactured from ultrafiltrated retentates obtained by ultrafiltration of pasteurized whole milk and that of severely heated whole milk and the process standardized with respect to the heat treatment, concentration of coagulant and temperature and pH of coagulation. An increase of 31.4% in the yield of chhana on product basis and of 16.4% on dry matter basis was achieved. Only 4.35 kg of milk was used to produce 1 kg chhana by the ultrafiltration method against 5.7 kg of milk by the conventional method. The process offers access to easy automation and control ensuring uniformity of production on a large scale.  相似文献   

17.
SUMMARY– Existing ultrafiltration/reverse osmosis technology provides a means of fractionating and concentrating cheese whey into liquid fractions containing a variety of protein: lactose ratios. These ratios may range from about 1:8 (raw whey) through 3:5 (a "skim milk equivalent") to 2:1 or higher. If a two- or three-stage ultrafiltration system were used with water injection between stages, a product with a protein:lactose ratio of 20:1 could be obtained. The exact protein:lactose ratio in the concentrate stream is a function of the permeability and selectivity characteristics of the membrane, and the system design and operating conditions. Some of the sanitation problems associated with the introduction of these new unit operations in the dairy and food processing industries are also treated at length.  相似文献   

18.
Pizza cheese was manufactured with milk (12.1% total solids, 3.1% casein, 3.1% fat) standardized with microfiltered (MF) and diafiltered retentates. Polymeric, spiral-wound MF membranes were used to process cold (<7°C) skim milk, and diafiltration of MF retentates resulted in at least 36% removal of serum protein on a true protein basis. Cheese milks were obtained by blending the MF retentate (16.4% total solids, 11.0% casein, 0.4% fat) with whole milk (12.1% total solids, 2.4% casein, 3.4% fat). Control cheese was made with part-skim milk (10.9% total solids, 2.4% casein, 2.4% fat). Initial trials with MF standardized milk resulted in cheese with approximately 2 to 3% lower moisture (45%) than control cheese (∼47 to 48%). Cheese-making procedures (cutting conditions) were then altered to obtain a similar moisture content in all cheeses by using a lower setting temperature, increasing the curd size, and lowering the wash water temperature during manufacture of the MF cheeses. Two types of MF standardized cheeses were produced, one with preacidification of milk to pH 6.4 (pH6.4MF) and another made from milk preacidified to pH 6.3 (pH6.3MF). Cheese functionality was assessed by dynamic low-amplitude oscillatory rheology, University of Wisconsin MeltProfiler, and performance on pizza. Nitrogen recoveries were significantly higher in MF standardized cheeses. Fat recoveries were higher in the pH6.3MF cheese than the control or pH6.4MF cheese. Moisture-adjusted cheese yield was significantly higher in the 2 MF-fortified cheeses compared with the control cheese. Maximum loss tangent (LTmax) values were not significantly different among the 3 cheeses, suggesting that these cheeses had similar meltability. The LTmax values increased during ripening. The temperature at which the LTmax was observed was highest in control cheese and was lower in the pH6.3MF cheese than in the pH6.4MF cheese. The temperature of the LTmax decreased with age for all 3 cheeses. Values of 12% trichloroacetic acid soluble nitrogen levels were similar in all cheeses. Performance on pizza was similar for all cheeses. The use of MF retentates derived with polymeric membranes was successful in increasing cheese yield, and cheese quality was similar in the control and MF standardized cheeses.  相似文献   

19.
Probiotic Iranian ultrafiltered Feta cheese was produced from ultrafiltration of milk with a volumetric concentration factor of 4.5:1. The heat-treated retentates were inoculated with 10(7) cfu of Lactobacillus casei LAFTI L26/mL. A mesophilic-thermophilic mixed culture of Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Streptococcus thermophilus was also used. Three percent (wt/wt) salt with different ratios of NaCl:KCl (100% NaCl, 50% NaCl:50% KCl, 75% NaCl:25% KCl, and 25% NaCl:75% KCl) were used in cheese formulation. The viability of L. casei was determined in treatments during the ripening period (90d at 5°C) within 15-d intervals. The pH, titratable acidity, and redox potential changes were monitored throughout the mentioned period. The mean pH drop rate, mean acidity increase rate, and mean redox potential increase rate were calculated at the end of the storage period. Also, total nitrogen, water-soluble nitrogen, lactic acid, and acetic acid concentrations, and syneresis and sensory characteristics of the product were measured during the mentioned period every 30d. The maximum viability of L. casei was observed within d 15 to 30 of the ripening period in the treatment containing the lowest amount of sodium. Addition of KCl enhanced syneresis. Cheeses with NaCl alone and with only 25% replacement by KCl have the highest sensory acceptability.  相似文献   

20.
《Journal of dairy science》1986,69(6):1479-1483
Ultrafiltered skim milk retentates were transported to a large industrial cottage cheese plant for milk supplementation leading to cottage cheese. The resulting industrial products were observed for composition, yields, whey component losses, and quality.Ten lots of small curd cottage cheese were made in vats containing up to 6593 kg skim milk. Retentate supplemented skim milks, concentrated approximately 10% (1.1:1) and 20% (1.2:1) in total protein, were very similar in initial composition to the controls. Mean cheese yield values from milks supplemented to 1.2:1 total protein were significantly higher than mean unsupplemented control milk values. Cheese yield efficiencies, per kilogram total solids, were also significantly higher in the retentate cheese but not when calculated per kilogram total protein.Total solids, total protein, and ash were higher in cottage cheese wheys from retentate supplemented cheese and were directly related to retentate supplementation concentration. Mean whey component loss per kilogram cheese exhibited significant decreases from milks of higher retentate supplementation. Retentate supplemented skim milk produced industrial cottage cheese of comparable quality to cheese made from unsupplemented control skim milks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号