首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
使用树结构建模对XML查询进行研究,提出了一种基于树同构的查询包含检测方法。采用最右分枝扩展方法,系统地枚举查询模式树的同根子树。在枚举过程中,采用Diffset结构记录包含同根子树的事务集的查询事务标识,并给出挖掘算法DiffFRSTMiner。实验结果证实了该算法合理、高效,并可以减少一定的内存开销。  相似文献   

2.
Providing efficient query to XML data for ebXML applications in e-commerce is crucial, as XML has become the most important technique to exchange data over the Internet. ebXML is a set of specifications for companies to exchange their data in e-commerce. Following the ebXML specifications, companies have a standard method to exchange business messages, communicate data, and business rules in e-commerce. Due to its tree-structure paradigm, XML is superior for its capability of storing and querying complex data for ebXML applications. Therefore, discovering frequent XML query patterns has become an interesting topic for XML data management in ebXML applications. In this paper, we present an efficient mining algorithm, namely ebXMiner, to discover the frequent XML query patterns for ebXML applications. Unlike the existing algorithms, we propose a new idea by collecting the equivalent XML queries and then enumerating the candidates from infrequent XML queries in our ebXMiner. Furthermore, our simulation results show that ebXMiner outperforms other algorithms in its execution time.  相似文献   

3.
There are many advanced techniques that can efficiently mine frequent itemsets using a minimum-support. However, the question that remains unanswered is whether the minimum-support can really help decision makers to make decisions. In this paper, we study four summary queries for frequent itemsets mining, namely, (1) finding a support-average of itemsets, (2) finding a support-quantile of itemsets, (3) finding the number of itemsets that greater/less than the support-average, i.e., an approximated distribution of itemsets, and (4) finding the relative frequency of an itemset (compared its frequency with that of other itemsets in the same dataset). With these queries, a decision maker will know whether an itemset in question is greater/less than the support-quantile; the distribution of itemsets; and the frequentness of an itemset. Processing these summary queries is challenging, because the minimum-support constraint cannot be used to prune infrequent itemsets. In this paper, we propose several simple yet effective approximation solutions. We conduct extensive experiments for evaluating our strategy, and illustrate that the proposed approaches can well model and capture the statistical parameters (summary queries) of itemsets in a database.  相似文献   

4.
The FP-growth algorithm using the FP-tree has been widely studied for frequent pattern mining because it can dramatically improve performance compared to the candidate generation-and-test paradigm of Apriori. However, it still requires two database scans, which are not consistent with efficient data stream processing. In this paper, we present a novel tree structure, called CP-tree (compact pattern tree), that captures database information with one scan (insertion phase) and provides the same mining performance as the FP-growth method (restructuring phase). The CP-tree introduces the concept of dynamic tree restructuring to produce a highly compact frequency-descending tree structure at runtime. An efficient tree restructuring method, called the branch sorting method, that restructures a prefix-tree branch-by-branch, is also proposed in this paper. Moreover, the CP-tree provides full functionality for interactive and incremental mining. Extensive experimental results show that the CP-tree is efficient for frequent pattern mining, interactive, and incremental mining with a single database scan.  相似文献   

5.
在频繁模式挖掘过程中能够动态改变约束的算法比较少.提出了一种基于约束的频繁模式挖掘算法MCFP.MCFP首先按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库,然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大模式树来存储,最后根据最大模式来找出所有支持度明确的频繁模式.MCFP算法允许用户在挖掘频繁模式过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的.  相似文献   

6.
针对多数隐私保护的频繁模式挖掘算法需要多次数据库扫描以及计数时需要进行多次比较的不足,提出了一种增量的基于位图的部分隐藏随机化回答(IBRRPH)算法。首先,引入bitmap表示数据库中的事务,采用位与操作有效提高支持度的计算速度;其次,通过分析增量访问关系,引入增量更新模型,使得在数据增量更新时频繁模式挖掘最大限度地利用了之前挖掘结果。针对增量分别为1000至40000,与顾铖等提出的算法(顾铖,朱保平,张金康.一种改进的隐私保护关联规则挖掘算法.南京航空航天大学学报,2015,47(1):119-124)进行了对比测试实验。实验结果表明,与顾铖等提出的算法相比,IBRRPH算法的效率提高幅度超过21%。  相似文献   

7.
传统数据挖掘算法在处理多表时,需要物理连接,存在效率不高的问题。为了解决这一问题,提出了一种多关系频繁模式挖掘算法。该算法利用元组ID传播的思想,使多表间无须物理连接,就可以直接挖掘频繁模式。实验表明,此算法具有较高的效率。  相似文献   

8.
Algorithms are typically designed to exploit the current state of the art in processor technology. However, as processor technology evolves, said algorithms are often unable to derive the maximum achievable performance on these modern architectures. In this paper, we examine the performance of frequent pattern mining algorithms on a modern processor. A detailed performance study reveals that even the best frequent pattern mining implementations, with highly efficient memory managers, still grossly under-utilize a modern processor. The primary performance bottlenecks are poor data locality and low instruction level parallelism (ILP). We propose a cache-conscious prefix tree to address this problem. The resulting tree improves spatial locality and also enhances the benefits from hardware cache line prefetching. Furthermore, the design of this data structure allows the use of path tiling, a novel tiling strategy, to improve temporal locality. The result is an overall speedup of up to 3.2 when compared with state of the art implementations. We then show how these algorithms can be improved further by realizing a non-naive thread-based decomposition that targets simultaneously multi-threaded processors (SMT). A key aspect of this decomposition is to ensure cache re-use between threads that are co-scheduled at a fine granularity. This optimization affords an additional speedup of 50%, resulting in an overall speedup of up to 4.8. The proposed optimizations also provide performance improvements on SMPs, and will most likely be beneficial on emerging processors.  相似文献   

9.
韩萌  丁剑 《计算机应用》2019,39(3):719-727
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。  相似文献   

10.
Caching query results is one efficient approach to improving the performance of XML management systems. This entails the discovery of frequent XML queries issued by users. In this paper, we model user queries as a stream of XML query pattern trees and mine the frequent query patterns over the query stream. To facilitate the one-pass mining process, we devise a novel data structure called DTS to summarize the pattern trees seen so far. By grouping the incoming pattern trees into batches, we can dynamically mark the active portion of the current batch in DTS and limit the enumeration of candidate trees to only the currently active pattern trees. We also design another summary data structure called ECTree that provides for the incremental computation of the frequent tree patterns over the query stream. Based on the above two constructs, we present two mining algorithms called XQSMinerI and XQSMinerII. XQSMinerI is fast, but it tends to overestimate, while XQSMinerII adopts a filter-and-refine approach to minimize the amount of overestimation. Experimental results show that the proposed methods are both efficient and scalable and require only small memory footprints.Received: 17 October 2003, Accepted: 16 April 2004, Published online: 14 September 2004Edited by: J. Gehrke and J. Hellerstein.  相似文献   

11.
频繁模式挖掘进展及典型应用   总被引:1,自引:0,他引:1       下载免费PDF全文
对近年来频繁模式的挖掘进行了总结。首先对有代表性的挖掘算法从算法思想、关键技术、算法的优缺点进行了分析概括,此后列举了一些典型频繁模式及关联规则的领域应用。综述内容的选择主要基于某一个研究后续被关注程度,组织过程中力争将相关研究进行归类,以给出其发展概貌。上述工作可以为频繁模式挖掘及关联规则的研究提供有益的参考。  相似文献   

12.
在XML频繁查询模式挖掘稠密数据集、长数据集中,为克服项目集挖掘过程中挖掘的项目过多、不利于结果利用等问题,提出基于频繁叶模式的最大频繁查询模式挖掘算法MFRSTMiner。该算法通过构造频繁模式扩展森林,在扩展森林的叶节点中挖掘出最大频繁子树。试验结果表明该算法能够有效地挖掘动态事务集的最大频繁查询模式。  相似文献   

13.
Constraint-based sequential pattern mining: the pattern-growth methods   总被引:4,自引:0,他引:4  
Constraints are essential for many sequential pattern mining applications. However, there is no systematic study on constraint-based sequential pattern mining. In this paper, we investigate this issue and point out that the framework developed for constrained frequent-pattern mining does not fit our mission well. An extended framework is developed based on a sequential pattern growth methodology. Our study shows that constraints can be effectively and efficiently pushed deep into the sequential pattern mining under this new framework. Moreover, this framework can be extended to constraint-based structured pattern mining as well. This research is supported in part by NSERC Grant 312194-05, NSF Grants IIS-0308001, IIS-0513678, BDI-0515813 and National Science Foundation of China (NSFC) grants No. 60303008 and 69933010. All opinions, findings, conclusions and recommendations in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.  相似文献   

14.
目前大部分XML查询语言都使用树模式来匹配待查询的XML文档树以得到所需要的、与模式树相吻合的查询结果,此效率在很大程度上取决于XML模式树的大小,那么尽可能快速地查找并删除查询模式树中的冗余节点就变得十分重要。重点讨论DTD约束下树模式的最小化问题,将DTD兄弟约束SC拓展成扩展兄弟约束ESC,使其能够表达DTD约束中的祖先-后代关系;并指出只包含{ESC,/,//,[],*}的查询树模式的最小化问题的复杂度是指数级的,且当模式树是分支受限的时候,其最小化问题的复杂度是多项式时间的;最后给出了一个多项式时间的受限分支的模式树最小化算法。  相似文献   

15.
There have been many kinds of association rule mining (ARM) algorithms, e.g., Apriori and FP-tree, to discover meaningful frequent patterns from a large dataset. Particularly, it is more difficult for such ARM algorithms to be applied for temporal databases which are continuously changing over time. Such algorithms are generally based on repeating time-consuming tasks, e.g., scanning databases. To deal with this problem, in this paper, we propose a constraint graph-based method for maintaining frequent patterns (FP) discovered from the temporal databases. Particularly, the constraint graph, which is represented as a set of constraint between two items, can be established by temporal persistency of the patterns. It means that some patterns can be used to build the constraint graph, when the patterns have been shown in a set of the FP. Two types of constraints can be generated by users and adaptation. Based on our scheme, we find that a large number of dataset has been efficiently reduced during mining process and the gathering information while updating.  相似文献   

16.
频繁模式挖掘在数据挖掘领域已经有广泛的应用.然而,对于增量更新频繁模式挖掘研究得不是很多.本文提出了一种新颖的增量更新频繁模式树结构(IUNP_Tree),构建它只需要对数据库扫描一次.此外,提出了基于条件矩阵(conditional matrix)的频繁模式挖掘算法(FPBM_Mine)和增量更新算法INUPA,可以有效地处理数据库的增量更新问题.实验表明,该算法是有效的,并且运行效率高于FP-growth算法.  相似文献   

17.
As data have been accumulated more quickly in recent years, corresponding databases have also become huger, and thus, general frequent pattern mining methods have been faced with limitations that do not appropriately respond to the massive data. To overcome this problem, data mining researchers have studied methods which can conduct more efficient and immediate mining tasks by scanning databases only once. Thereafter, the sliding window model, which can perform mining operations focusing on recently accumulated parts over data streams, was proposed, and a variety of mining approaches related to this have been suggested. However, it is hard to mine all of the frequent patterns in the data stream environment since generated patterns are remarkably increased as data streams are continuously extended. Thus, methods for efficiently compressing generated patterns are needed in order to solve that problem. In addition, since not only support conditions but also weight constraints expressing items’ importance are one of the important factors in the pattern mining, we need to consider them in mining process. Motivated by these issues, we propose a novel algorithm, weighted maximal frequent pattern mining over data streams based on sliding window model (WMFP-SW) to obtain weighted maximal frequent patterns reflecting recent information over data streams. Performance experiments report that MWFP-SW outperforms previous algorithms in terms of runtime, memory usage, and scalability.  相似文献   

18.
XML data broadcast is an efficient way to disseminate XML data to a large number of mobile clients in mobile wireless networks. Recently, several indexing methods have been proposed to improve the performance of XML query processing in terms of access time and tuning time over XML streams. However, existing indexing methods cannot process twig pattern XML queries. In this paper, we propose a novel structure for streaming XML data called PS+Pre/Post by integrating the path summary technique and the pre/post labeling scheme. Our proposed XML stream structure exploits the benefits of the path summary technique and the pre/post labeling scheme to efficiently process different types of XML queries over the broadcast stream. Experimental results show that our proposed XML stream structure improves the performance of access time and tuning time in processing different types of XML queries.  相似文献   

19.
关联规则挖掘是数据挖掘重要研究课题,大数据处理对关联规则挖掘算法效率提出了更高要求,而关联规则挖掘的最耗时的步骤是频繁模式挖掘。针对当前频繁模式挖掘算法效率不高的问题,结合Apriori算法和FP-growth算法,提出一种基于事务映射区间求交的频繁模式挖掘算法IITM(interval interaction and transaction mapping),只需扫描数据集两次来生成FP树,然后扫描FP树将每个项的ID映射到区间中,通过区间求交来进行模式增长。该算法解决了Apriori算法需要多次扫描数据集,FP-growth算法需要迭代地生成条件FP树来进行模式增长而带来的效率下降的问题。在真实数据集上的实验显示,在不同的支持度下IITM算法都要要优于Apriori、FP-growth以及PIETM算法。  相似文献   

20.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号