首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In classification problems with hierarchical structures of labels, the target function must assign labels that are hierarchically organized and it can be used either for single-label (one label per instance) or multi-label classification problems (more than one label per instance). In parallel to these developments, the idea of semi-supervised learning has emerged as a solution to the problems found in a standard supervised learning procedure (used in most classification algorithms). It combines labelled and unlabelled data during the training phase. Some semi-supervised methods have been proposed for single-label classification methods. However, very little effort has been done in the context of multi-label hierarchical classification. Therefore, this paper proposes a new method for supervised hierarchical multi-label classification, called HMC-RAkEL. Additionally, we propose the use of semi-supervised learning, self-training, in hierarchical multi-label classification, leading to three new methods, called HMC-SSBR, HMC-SSLP and HMC-SSRAkEL. In order to validate the feasibility of these methods, an empirical analysis will be conducted, comparing the proposed methods with their corresponding supervised versions. The main aim of this analysis is to observe whether the semi-supervised methods proposed in this paper have similar performance of the corresponding supervised versions.  相似文献   

2.
Ensemble methods have been shown to be an effective tool for solving multi-label classification tasks. In the RAndom k-labELsets (RAKEL) algorithm, each member of the ensemble is associated with a small randomly-selected subset of k labels. Then, a single label classifier is trained according to each combination of elements in the subset. In this paper we adopt a similar approach, however, instead of randomly choosing subsets, we select the minimum required subsets of k labels that cover all labels and meet additional constraints such as coverage of inter-label correlations. Construction of the cover is achieved by formulating the subset selection as a minimum set covering problem (SCP) and solving it by using approximation algorithms. Every cover needs only to be prepared once by offline algorithms. Once prepared, a cover may be applied to the classification of any given multi-label dataset whose properties conform with those of the cover. The contribution of this paper is two-fold. First, we introduce SCP as a general framework for constructing label covers while allowing the user to incorporate cover construction constraints. We demonstrate the effectiveness of this framework by proposing two construction constraints whose enforcement produces covers that improve the prediction performance of random selection by achieving better coverage of labels and inter-label correlations. Second, we provide theoretical bounds that quantify the probabilities of random selection to produce covers that meet the proposed construction criteria. The experimental results indicate that the proposed methods improve multi-label classification accuracy and stability compared to the RAKEL algorithm and to other state-of-the-art algorithms.  相似文献   

3.
In classic pattern recognition problems, classes are mutually exclusive by definition. Classification errors occur when the classes overlap in the feature space. We examine a different situation, occurring when the classes are, by definition, not mutually exclusive. Such problems arise in semantic scene and document classification and in medical diagnosis. We present a framework to handle such problems and apply it to the problem of semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels (e.g., a field scene with a mountain in the background). Such a problem poses challenges to the classic pattern recognition paradigm and demands a different treatment. We discuss approaches for training and testing in this scenario and introduce new metrics for evaluating individual examples, class recall and precision, and overall accuracy. Experiments show that our methods are suitable for scene classification; furthermore, our work appears to generalize to other classification problems of the same nature.  相似文献   

4.
Several meta-learning techniques for multi-label classification (MLC), such as chaining and stacking, have already been proposed in the literature, mostly aimed at improving predictive accuracy through the exploitation of label dependencies. In this paper, we propose another technique of that kind, called dependent binary relevance (DBR) learning. DBR combines properties of both, chaining and stacking. We provide a careful analysis of the relationship between these and other techniques, specifically focusing on the underlying dependency structure and the type of training data used for model construction. Moreover, we offer an extensive empirical evaluation, in which we compare different techniques on MLC benchmark data. Our experiments provide evidence for the good performance of DBR in terms of several evaluation measures that are commonly used in MLC.  相似文献   

5.
A Bayesian network classifier can be used to estimate the probability of an air pollutant overcoming a certain threshold. Yet multiple predictions are typically required regarding variables which are stochastically dependent, such as ozone measured in multiple stations or assessed according to by different indicators. The common practice (independent approach) is to devise an independent classifier for each class variable being predicted; yet this approach overlooks the dependencies among the class variables. By appropriately modeling such dependencies one can improve the accuracy of the forecasts. We address this problem by designing a multi-label classifier, which simultaneously predict multiple air pollution variables. To this end we design a multi-label classifier based on Bayesian networks and learn its structure through structural learning. We present experiments in three different case studies regarding the prediction of PM2.5 and ozone. The multi-label classifier outperforms the independent approach, allowing to take better decisions.  相似文献   

6.
FRCT: fuzzy-rough classification trees   总被引:1,自引:1,他引:0  
Using fuzzy-rough hybrids, we have proposed a measure to quantify the functional dependency of decision attribute(s) on condition attribute(s) within fuzzy data. We have shown that the proposed measure of dependency degree is a generalization of the measure proposed by Pawlak for crisp data. In this paper, this new measure of dependency degree has been encapsulated into the decision tree generation mechanism to produce fuzzy-rough classification trees (FRCT); efficient, top-down, multi-class decision tree structures geared to solving classification problems from feature-based learning examples. The developed FRCT generation algorithm has been applied to 16 real-world benchmark datasets. It is experimentally compared with the five fuzzy decision tree generation algorithms reported so far, and the rough decomposition tree algorithm. Comparison has been made in terms of number of rules, average training time, and classification accuracy. Experimental results show that the proposed algorithm to generate FRCT outperforms existing fuzzy decision tree generation techniques and rough decomposition tree induction algorithm.
Rajen B. BhattEmail:

Dr. Rajen Bhatt   has obtained his B.E. and M.E. both in Control and Instrumentation, from S.S. Engineering College, Bhavnagar, and from Delhi College of Engineering, New Delhi in 1999 and 2002, respectively. He has obtained his Ph.D. from the Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA in 2006. He was actively engaged in the development of multimedia course on Control Engineering under the National Program on Technology Enabled Learning (NPTEL). He is a regular reviewer of International Journals like Pattern Recognition, Information Sciences, Pattern Analysis and Applications, and IEEE Trans. on Systems, Man and Cybernatics. Since June 2005, he is working with Imaging team of Samsung India Software Centre as a Lead Engineer. He also serves as a Member of Patent Review Committee at Samsung. He has published several research papers in reputed journals and conferences. His current research interests are Pattern Classification and Regression, Soft Computing, Data mining, Patents and Trademarks, and Information Technology for Education. He holds an expertise over industry standard software project management. Dr. M. Gopal   has obtained his B.Tech. (Electrical), M.Tech. (Control systems), and Ph.D. (Control Systems) degrees. all from Birla Institute of Technology and Science, Pilani in 1968, 1970, and 1976, respectively. He has been in the teaching and research field for the last three and half decades; associated with NIT Jaipur, BITS Pilani, IIT Bombay, City University London, and University Technology Malaysia, and IIT Delhi. Since January 1986 he is a Professor with the Electrical Engineering Department, Indian Institute of Technology Delhi. He has published six books in the area of Control Engineering, and a video course on Control Engineering including complete presentation and student questionnaires. He has also published interactive web-compatible multimedia course on Control Engineering, under National Program on Technology Enabled Learning (NPTEL). He has published several research papers in referred journals and conferences. His current research interests include Machine learning, Soft computing technologies, Intelligent control, and e-Learning.   相似文献   

7.
Hierarchical classification can be seen as a multidimensional classification problem where the objective is to predict a class, or set of classes, according to a taxonomy. There have been different proposals for hierarchical classification, including local and global approaches. Local approaches can suffer from the inconsistency problem, that is, if a local classifier has a wrong prediction, the error propagates down the hierarchy. Global approaches tend to produce more complex models. In this paper, we propose an alternative approach inspired in multidimensional classification. It starts by building a multi-class classifier per each parent node in the hierarchy. In the classification phase, all the local classifiers are applied simultaneously to each instance, providing a probability for each class in the taxonomy. Then the probability of the subset of classes, for each path in the hierarchy, is obtained by combining the local classifiers results. The path with highest probability is returned as the result for all the levels in the hierarchy. As an extension of the proposal method, we also developed a new technique, based on information gain, to classifies at different levels in the hierarchy. The proposed method was tested on different hierarchical classification data sets and was compared against state-of-the-art methods, resulting in superior predictive performance and/or efficiency to the other approaches in all the datasets.  相似文献   

8.
In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naïve Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.  相似文献   

9.
Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.  相似文献   

10.
Feature selection for multi-label naive Bayes classification   总被引:4,自引:0,他引:4  
In multi-label learning, the training set is made up of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances. In this paper, this learning problem is addressed by using a method called Mlnb which adapts the traditional naive Bayes classifiers to deal with multi-label instances. Feature selection mechanisms are incorporated into Mlnb to improve its performance. Firstly, feature extraction techniques based on principal component analysis are applied to remove irrelevant and redundant features. After that, feature subset selection techniques based on genetic algorithms are used to choose the most appropriate subset of features for prediction. Experiments on synthetic and real-world data show that Mlnb achieves comparable performance to other well-established multi-label learning algorithms.  相似文献   

11.
Hybrid strategy, which generalizes a specific single-label algorithm while one or two data decomposition tricks are applied implicitly or explicitly, has become an effective and efficient tool to design and implement various multi-label classification algorithms. In this paper, we extend traditional binary support vector machine by introducing an approximate ranking loss as its empirical loss term to build a novel support vector machine for multi-label classification, resulting into a quadratic programming problem with different upper bounds of variables to characterize label correlation of individual instance. Further, our optimization problem can be solved via combining one-versus-rest data decomposition trick with modified binary support vector machine, which dramatically reduces computational cost. Experimental study on ten multi-label data sets illustrates that our method is a powerful candidate for multi-label classification, compared with four state-of-the-art multi-label classification approaches.  相似文献   

12.
Computer programming ability is a type of knowledge that is considered to be quite complex because it demands many cognitive skills and extensive practice to be mastered. However, formative assessment is a strategy that can improve learning. For this reason, we developed a recommender system to aid in making choices on programming practices by recommending classes of activities. This system provides instructors with a means of semi-automatic assessment, with more individualised and accurate activities tailored to the needs of their learners. To achieve this goal, the system of recommendations analyses multidimensional profiles of new students and seeks the best match for them among profiles in the logs of previous recommendations, which were made manually. Based on these matched profiles, the system can now recommend to new learners classes of activities that are indicated by similar profiles that have already received recommendations. The recommendation of activities is thus treated by our system as a multi-label classification task in which each student’s profile is associated with one or more classes of programming activities. The results obtained under different evaluation metrics confirm that the chosen algorithm, the ML-kNN, correctly mimics human decisions on the recommendations of classes of activities most of the time. Furthermore, these metrics provide relevant information for instructors to perform better actions with regard to formative assessments.  相似文献   

13.
14.
In this paper, we propose a novel framework for multi-label classification, which directly models the dependencies among labels using a Bayesian network. Each node of the Bayesian network represents a label, and the links and conditional probabilities capture the probabilistic dependencies among multiple labels. We employ our Bayesian network structure learning method, which guarantees to find the global optimum structure, independent of the initial structure. After structure learning, maximum likelihood estimation is used to learn the conditional probabilities among nodes. Any current multi-label classifier can be employed to obtain the measurements of labels. Then, using the learned Bayesian network, the true labels are inferred by combining the relationship among labels with the labels? estimates obtained from a current multi-labeling method. We further extend the proposed multi-label classification method to deal with incomplete label assignments. Structural Expectation-Maximization algorithm is adopted for both structure and parameter learning. Experimental results on two benchmark multi-label databases show that our approach can effectively capture the co-occurrent and the mutual exclusive relation among labels. The relation modeled by our approach is more flexible than the pairwise or fixed subset labels captured by current multi-label learning methods. Thus, our approach improves the performance over current multi-label classifiers. Furthermore, our approach demonstrates its robustness to incomplete multi-label classification.  相似文献   

15.
Small scale-incidents such as car crashes or fires occur with high frequency and in sum involve more people and consume more money than large and infrequent incidents. Therefore, the support of small-scale incident management is of high importance.Microblogs are an important source of information to support incident management as important situational information is shared, both by citizens and official sources. While microblogs are already used to address large-scale incidents detecting small-scale incident-related information was not satisfyingly possible so far.In this paper we investigate small-scale incident reporting behavior with microblogs. Based on our findings, we present an easily extensible rapid prototyping framework for information extraction of incident-related tweets. The framework enables the precise identification and extraction of information relevant for emergency management. We evaluate the rapid prototyping capabilities and usefulness of the framework by implementing the multi-label classification of tweets related to small-scale incidents. An evaluation shows that our approach is applicable for detecting multiple labels with an match rate of 84.35%.  相似文献   

16.
Hakan   《Pattern recognition》2007,40(12):3540-3551
Decision trees recursively partition the instance space by generating nodes that implement a decision function belonging to an a priori specified model class. Each decision may be univariate, linear or nonlinear. Alternatively, in omnivariate decision trees, one of the model types is dynamically selected by taking into account the complexity of the problem defined by the samples reaching that node. The selection is based on statistical tests where the most appropriate model type is selected as the one providing significantly better accuracy than others. In this study, we propose the use of model ensemble-based nodes where a multitude of models are considered for making decisions at each node. The ensemble members are generated by perturbing the model parameters and input attributes. Experiments conducted on several datasets and three model types indicate that the proposed approach achieves better classification accuracies compared to individual nodes, even in cases when only one model class is used in generating ensemble members.  相似文献   

17.
Artificial Intelligence (AI) use in automated Electrocardiogram (ECG) classification has continuously attracted the research community’s interest, motivated by their promising results. Despite their great promise, limited attention has been paid to the robustness of their results, which is a key element for their implementation in clinical practice. Uncertainty Quantification (UQ) is a critical for trustworthy and reliable AI, particularly in safety-critical domains such as medicine. Estimating uncertainty in Machine Learning (ML) model predictions has been extensively used for Out-of-Distribution (OOD) detection under single-label tasks. However, the use of UQ methods in multi-label classification remains underexplored.This study goes beyond developing highly accurate models comparing five uncertainty quantification methods using the same Deep Neural Network (DNN) architecture across various validation scenarios, including internal and external validation as well as OOD detection, taking multi-label ECG classification as the example domain. We show the importance of external validation and its impact on classification performance, uncertainty estimates quality, and calibration. Ensemble-based methods yield more robust uncertainty estimations than single network or stochastic methods. Although current methods still have limitations in accurately quantifying uncertainty, particularly in the case of dataset shift, incorporating uncertainty estimates with a classification with a rejection option improves the ability to detect such changes. Moreover, we show that using uncertainty estimates as a criterion for sample selection in active learning setting results in greater improvements in classification performance compared to random sampling.  相似文献   

18.
In hierarchical classification, classes are arranged in a hierarchy represented by a tree or a forest, and each example is labeled with a set of classes located on paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn a hierarchical classifier, usually used as a baseline method, consists in learning one binary classifier for each node of the hierarchy; the hierarchical classifier is then obtained using a top-down evaluation procedure. The main drawback of this naive approach is that these binary classifiers are constructed independently, when it is clear that there are dependencies between them that are motivated by the hierarchy and the evaluation procedure employed. In this paper, we present a new decomposition method in which each node classifier is built taking into account other classifiers, its descendants, and the loss function used to measure the goodness of hierarchical classifiers. Following a bottom-up learning strategy, the idea is to optimize the loss function at every subtree assuming that all classifiers are known except the one at the root. Experimental results show that the proposed approach has accuracies comparable to state-of-the-art hierarchical algorithms and is better than the naive baseline method described above. Moreover, the benefits of our proposal include the possibility of parallel implementations, as well as the use of all available well-known techniques to tune binary classification SVMs.  相似文献   

19.
This paper presents an analysis of the design of classifiers for use in a hierarchical object recognition approach. In this approach, a cascade of classifiers is arranged in a tree in order to recognize multiple object classes. We are interested in the problem of recognizing multiple patterns as it is closely related to the problem of locating an articulated object. Each different pattern class corresponds to the hand in a different pose, or set of poses. For this problem obtaining labelled training data of the hand in a given pose can be problematic. Given a parametric 3D model, generating training data in the form of example images is cheap, and we demonstrate that it can be used to design classifiers almost as good as those trained using non-synthetic data. We compare a variety of different template-based classifiers and discuss their merits.  相似文献   

20.
We propose the use of Vapnik's vicinal risk minimization (VRM) for training decision trees to approximately maximize decision margins. We implement VRM by propagating uncertainties in the input attributes into the labeling decisions. In this way, we perform a global regularization over the decision tree structure. During a training phase, a decision tree is constructed to minimize the total probability of misclassifying the labeled training examples, a process which approximately maximizes the margins of the resulting classifier. We perform the necessary minimization using an appropriate meta-heuristic (genetic programming) and present results over a range of synthetic and benchmark real datasets. We demonstrate the statistical superiority of VRM training over conventional empirical risk minimization (ERM) and the well-known C4.5 algorithm, for a range of synthetic and real datasets. We also conclude that there is no statistical difference between trees trained by ERM and using C4.5. Training with VRM is shown to be more stable and repeatable than by ERM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号