首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于DWT-DCT-SVM的人脸表情识别   总被引:1,自引:0,他引:1  
提出了一种基于二维离散小波一离散余弦变换-支持向量机(DWT-DCT-SVM)面部表情识别算法。该算法先利用DWT在不明显损失图像信息的基础上对表情图像进行变换,变换后的图像数据量大大减少。再利用DCT提取代表原图像绝大部分能量的数据作为表情特征矢量,最后利用SVM来识别。实验表明:本算法提取的500个数据长度的表情矢量在一定条件下能较准确地识别出通用的6种表情,但是泛化性能较差。  相似文献   

2.
为了获得更好的面部表情特征,提出了一种融合离散余弦变换(Discrete Cosine Transform,DCT)特征和局部二值模式(Local Binary Pattern,LBP)特征的表情特征提取方法。该方法将人脸图像经过DCT后所获得的低频系数作为表情的整体特征;通过对人脸图像进行分块,计算每个子块的LBP直方图,将这些LBP直方图连接起来形成LBP特征,对该LBP特征使用拉普拉斯特征映射(Laplacian Eigenmaps,LE)降维后得到表情的局部特征。将得到的整体特征和局部特征进行加权融合,使用最近邻分类器进行分类。在JAFFE和Cohn-Kanade表情库上的实验结果表明,该方法比单独使用LBP或者DCT特征,具有更好的效果。  相似文献   

3.
基于混合特征和多HMM融合的图像序列表情识别   总被引:1,自引:1,他引:1  
当前多数图像序列的人脸表情识别方法仅提取图像的某一类特征,导致特征参数不能全面地反映脸部情感信息.提出一种基于混合特征和多HMM融合的图像序列表情识别方法.采用Gabor小波变换、二维离散余弦变换分别提取眼睛及眉毛区域、鼻子区域的纹理变化特征,对嘴巴区域则采用主动表观模型提取形状变化特征.对待测图像序列中的每个表情特征区域采用离散隐马尔可夫模型得出6种表情概率;然后根据在训练阶段得到的每个表情特征区域对每种表情的贡献权值进行加权融合,并选择融合后的表情概率最大者作为识别结果.实验结果表明,该方法综合了表情的纹理与形状变化,能够得到很好的识别效果,且处理速度快,适合于实时图像序列的表情识别.  相似文献   

4.
基于Gabor小波变换的人脸表情识别   总被引:1,自引:0,他引:1  
对基于Gabor小波变换的人脸表情识别方法进行了研究.对图像进行预处理以提高后续处理的准确度,通过分析二维Gabor小波变换的优点和人脸表情特征的变化情况,利用二维Gabor小波变换提取脸部表情特征,使用弹性模板匹配算法来识别图像中的人脸表情.实验结果表明,这种方法与传统的识别方法相比,系统具有很好的鲁棒性,达到较高的识别率.  相似文献   

5.
一种基于Gabor小波特征的人脸表情识别新方法   总被引:1,自引:0,他引:1  
罗飞  王国胤  杨勇 《计算机科学》2009,36(1):181-183
近来,表情识别成为人机交互研究的热点.将Gabor小波变换与2DPCA结合提出了一种表情识别的新方法.首先对静态灰度表情图片进行预处理,然后对其进行Gabar小波变换,通过2DPCA进行降维,根据Gabor不同尺度不同方向的变换结果训练不同的分类器,由校验集得到分类器权值,通过隶属度函数将各个分类结果模糊化,实现了分类器集成和表情特征数据的融合.实验证明了Gabor小渡与2DPCA结合在表情识别中的有效性,以及基于Gabor小波模糊分类器集成的方法能够进一步提高识别率.  相似文献   

6.
人脸表情识别是一项充满挑战的工作,提出一种基于局部Gabor二值模式(LGBP)特征和稀疏表示的表情识别方法.对表情图像进行归一化处理,标定眉毛、眼睛、嘴巴等部位的特征点,划分出5个表情子区域.对各个子区域进行多尺度多方向的Gabor滤波,对Gabor系数图谱进行局部二值模式(LBP)编码,通过直方图方法降维,形成显著的特征向量.根据特征向量构建符合视觉特征的过完备字典,运用稀疏表示分类方法进行表情识别.通过在JAFFE表情库上进行实验,表情识别率达到87.5%,表明了该方法的有效性.  相似文献   

7.
童莹 《计算机工程与设计》2014,(11):3918-3922,3979
传统HOG特征是一种有效的图像边缘信息描述符,但它忽略了局部特征之间的空间排列信息,针对此缺点,提出空间多尺度HOG模型。逐层将图像细化分成一系列不同尺度的子区域;采用改进HOG算子分别计算各个子区域的梯度方向直方图,按层按顺序将其连接,得到整幅图像的“空间多尺度”HOG特征。在JAFFE数据库上的实验结果表明,该算法在识别效果和运行时间方面优于HOG、LBP、Gabor等传统特征描述子,通过多尺度梯度方向准确描述了面部肌肉褶皱变化所蕴含的表情信息,是一种更有效的表情特征描述子。  相似文献   

8.
摘 要 本文提出了一种在临界抽样条件下基于2D DCT的二维实值离散Gabor变换(2D RDGT),介绍了其快速算法。并比较了该变换与二维复值离散Gabor变换(2D CDGT)的算法复杂性。  相似文献   

9.
为了使人机交互得到更好的研究,提出了一种基于Gabor小波变换的人脸表情识别的新方法;首先对图像进行预处理以提高后续处理的准确度,预处理包括确定纯的人脸表情区域,尺寸和灰度归一化,然后对表情子区域进行Gabor小波变换,提取表情特征矢量,进而构建表情弹性图,最后用模板匹配的方法来识别图像的人脸表情;经过实验,发现Gabor小波变换提取特征时受光照影响比较小,该系统不仅具有很好的鲁棒性,并且速度快,识别率高。  相似文献   

10.
针对Gabor小波与局部二值模式(Local Binary Pattern,LBP)在表情识别上的局限性,提出了一种多尺度中心误差补偿二值模式(Center Error Compensation Binary Pattern,CECBP)的表情识别方法。对预处理后的人脸表情图像创建多尺度的金字塔,用中心误差补偿二值模式对金字塔中的各层图像进行编码,分块提取各层编码后的直方图序列作为特征,用支持向量机(Support Vector Machine,SVM)进行分类。在JAFFE、Cohn-Kanade以及Pain Expression表情库上的交叉验证表明,该方法可以抑制噪声,具有较高的识别率和较快的识别速度,比传统的Gabor小波以及LBP更具有优势。  相似文献   

11.
提出了一种结合Gabor变换和FastICA技术的人脸表情特征提取方法。Gabor小波具有很好的空频局部性和多方向选择性,因此更有利于表情细节信息的提取。FastICA技术能够消除信号间的高阶统计冗余。对图像进行Gabor变换,把得到的系数排列成Gabor特征矢量,用FastICA对Gabor特征矢量进行特征提取,用K-近邻分类器进行分类。JAFFE表情库中的实验证明该方法的有效性。  相似文献   

12.
目的 针对人脸表情识别中存在局部遮挡的问题,提出一种融合局部特征的面部遮挡表情识别方法。方法 首先,为了减少噪声的影响,利用高斯滤波对归一化后的图像进行去噪处理;然后根据人脸不同部位对表情识别的不同贡献度,将图像划分为两个重要的子区域,并分别对该子区域进行不重叠分块处理;采用改进的中心对称局部二值模式(差值中心对称局部二值模式DCS-LBP)和改进的差值局部方向模式(梯度中心对称局部方向模式GCS-LDP)对各个子块提取相应的特征,并采用级联的方式得到图像的特征直方图;最后结合最近邻分类器对表情图像进行分类识别:利用卡方距离求取测试集图像与训练集图像特征直方图之间的距离,同时考虑到遮挡的干扰以及每个子块包含信息量的不同,利用信息熵对子块得到的卡方距离进行自适应加权。结果 在日本女性人脸表情库(JAFFE)和Cohn-Kanade(CK)人脸表情库上进行了3次交叉实验。在JAFFE库中随机遮挡、嘴部遮挡和眼部遮挡分别可以取得92.86%、94.76%和86.19%以上的平均识别率;在CK库中随机遮挡、嘴部遮挡和眼部遮挡分别可以取得99%、98.67%和99%以上的平均识别率。结论 该特征提取方法通过融合梯度方向上灰度值的差异以及梯度方向之间边缘响应值的差异来描述图像的特征,更加完整地提取了图像的细节信息。针对遮挡情况,本文采用的图像分割和信息熵自适应加权方法,有效地降低了遮挡对表情识别的干扰。在相同的实验环境下,与经典的局部特征提取方法以及遮挡问题处理方法的对比表明了该方法的有效性和优越性。  相似文献   

13.
基于多尺度中心化二值模式的人脸表情识别   总被引:1,自引:1,他引:1  
现有局部二值模式(LBP) 算子存在不足: 产生的直方图维数过长、鉴别力不高、对噪声反应敏感. 针对此类问题, 提出中心化二值模式(CBP) 算子, 其优点: 1) 通过比较邻域中近邻点对, 大大降低了直方图维数; 2) 考虑中心像素点的作用并赋予其最高权重, 实现鉴别力的提高; 3) 改变LBP算子的符号函数, 明显减弱白噪声对图像的影响.此外, 为提高识别率, 将多尺度CBP(MCBP) 直方图作为人脸表征. 为增强算法对表情图像中细小变形的鲁棒性, 引入图像欧式距离(IMED) 并将其嵌入MCBP方法. 在JAFFE和Cohn-Kanade表情库的实验结果表明: 所提方法优于其它表情识别方法, IMED可增强MCBP的表情识别能力.  相似文献   

14.
基于完整LBP特征的人脸识别*   总被引:2,自引:1,他引:2  
提出一种基于完整局部二值模式(CLBP)进行人脸识别的方法,CLBP算子包括三个部分:中心像素的LBP(CLBP_C)、符号部分的LBP(CLBP_S)、数值部分的LBP(CLBP_M)。该方法首先采用CLBP算子提取人脸灰度图像的直方图;然后融合成CLBP直方图,进行直方图相似性比较;最后根据最近邻原则进行识别。在ORL和YALE标准人脸数据库上的实验表明,该方法得到的结果比LBP效果更好,鲁棒性更高。  相似文献   

15.
首先对人脸表情的特点进行分析,提出了利用Gabor小波特征、主分量分析(PCA)结合混合高斯模型的人脸表情分析方法,并在人脸表情数据库JAFFE进行了实验。通过对不同表情的分布规律进行实验分析,实现了对表情的定性/定量分析。实验结果表明,提出的人脸表情分析方法能够对人脸表情进行恰当的表达和描述。  相似文献   

16.
提出了一种新的视频人脸表情识别方法. 该方法将识别过程分成人脸表情特征提取和分类2个部分,首先采用基于点跟踪的活动形状模型(ASM)从视频人脸中提取人脸表情几何特征;然后,采用一种新的局部支撑向量机分类器对表情进行分类. 在Cohn2Kanade数据库上对KNN、SVM、KNN2SVM和LSVM 4种分类器的比较实验结果验证了所提出方法的有效性.  相似文献   

17.
基于局部二元模式的面部表情识别研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于局部二元模式(Local Binary Pattern,LBP)与支持向量机(SVM)相结合的面部表情识别方法。使用LBP算子对图像进行处理,对图像的模式进行统计形成面部表情特征;使用线性判别分析对表情特征进行降维处理;采用支持向量机对面部表情进行分类。用Matlab实现了上述方法,并在日本女性人脸表情(JAFFE)数据库上测试,取得了70.95%的识别率。  相似文献   

18.
刘姗姗  王玲 《计算机应用》2009,29(11):3040-3043
针对包含表情信息的静态灰度图像,提出基于自动分割的局部Gabor小波人脸表情识别算法。首先使用数学形态学与积分投影相结合定位眉毛眼睛区域,采用模板内计算均值定位嘴巴区域,自动分割出表情子区域。接着,对分割出的表情子区域进行Gabor小波变换提取表情特征,再利用Fisher线性判别分析进行选择,有效地去除了表情特征的冗余性和相关性。最后利用支持向量机实现对人脸表情的分类。用该算法在日本女性表情数据库上进行测试,实现了自动化且易于实现,结果证明了该方法的有效性。  相似文献   

19.
针对方向性局部二值模式(DLBP)在单尺度下获取图像纹理特征的不足,提出一种非对称方向性局部二值模式(AR-DLBP)多尺度多方向融合的表情识别算法。首先对人脸表情图像进行光照补偿预处理,消除光照、噪声的影响,分割出人脸及眉、眼、嘴局部表情关键区域,并计算出关键区域的贡献度(CM);然后提取人脸及关键区域的异或-非对称方向性局部二值模式(XOR-AR-DLBP)直方图特征信息,并根据CM对关键区域直方图信息进行加权级联再与整幅人脸图像的特征信息进行融合;最后用SVM分类器进行表情分类识别。该算法在JAFFE库、CK库上仿真实验,分别取得95.71%、97.99%的平均识别率及112?ms、135?ms的平均识别时间,实验结果表明,该算法可以有效精确地完成人脸表情的分类识别。通过对表情图像光照补偿预处理及分割出表情的关键区域,并加权融合局部与整体特征,大大提高了特征的鉴别能力,与传统算法的对比实验,也表明该算法无论是在识别率还是在识别时间上,所得效果都是最好的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号