首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The work proposes two novel spreading codes,called extensive double-orthogonal code(EDOC) and flexible paired-orthogonal code(FPOC),for multi-user downlink multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) systems.The goal of code designs is to obtain an improved bit error rate(BER) performance without loss of bandwidth efficiency.The code designs achieve space diversity by employing multiple antennas at both transmit ends and receive ends.Codes are reasonably spread into...  相似文献   

2.
Performance analysis and design optimization of LDPC-coded MIMO OFDM systems   总被引:11,自引:0,他引:11  
We consider the performance analysis and design optimization of low-density parity check (LDPC) coded multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems for high data rate wireless transmission. The tools of density evolution with mixture Gaussian approximations are used to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios (SNRs) for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations, which include a different number of antennas, different channel models, and different demodulation schemes; the optimized performance is compared with the corresponding channel capacity. It is shown that along with the optimized irregular LDPC codes, a turbo iterative receiver that consists of a soft maximum a posteriori (MAP) demodulator and a belief-propagation LDPC decoder can perform within 1 dB from the ergodic capacity of the MIMO OFDM systems under consideration. It is also shown that compared with the optimal MAP demodulator-based receivers, the receivers employing a low-complexity linear minimum mean-square-error soft-interference-cancellation (LMMSE-SIC) demodulator have a small performance loss (< 1dB) in spatially uncorrelated MIMO channels but suffer extra performance loss in MIMO channels with spatial correlation. Finally, from the LDPC profiles that already are optimized for ergodic channels, we heuristically construct small block-size irregular LDPC codes for outage MIMO OFDM channels; as shown from simulation results, the irregular LDPC codes constructed here are helpful in expediting the convergence of the iterative receivers.  相似文献   

3.
We develop a semi-deterministic semi-stochastic channel model for the multiple-input multiple-output (MIMO) system under the macrocell environment with local-to-mobile and local-to-base scatterers. We show that employing closely-spaced antennas (e.g., phased array) at the base station is capable of achieving diversity via the local-to-base scatterers, which avoids impractical large aperture requirement for the spatial diversity at the base station. We evaluate the system performance in terms of ergodic capacity, average pairwise error probability (PEP), and signal-to-noise ratio (SNR); derive closed-form expressions for lower and upper bounds on the capacity and PEP; and show that the capacity, multiplexing and diversity gains are limited by the number of multipaths around the base station. The base-station array affects the lower bound on the capacity and the upper bound on the error probability through the same metric; thus, optimal design of the base station array based on this metric will optimize the two different information theoretic measures simultaneously. The fading correlation matrix also appears in the two bounds in the same form. To improve the performance of the macrocell MIMO system, we propose using artificial scatterers and discuss optimal design issues. Numerical examples demonstrate the accuracy of our analytical results and tightness of performance bounds.  相似文献   

4.
We consider the design of space-time codes for multiple-input multiple-output (MIMO) systems operated in the presence of co-channel interference (CCI). Based on the pairwise probability of error analysis, we develop a new design criterion that determines the code robustness to CCI (CCI diversity gain). We further develop an algebraic framework for constructing space-time codes that jointly optimize the fading and CCI diversity gains. The proposed framework is general for arbitrary numbers of transmit antennas and quadrature amplitude modulation constellations. Numerical results that quantify the performance gains offered by the proposed techniques are also presented.  相似文献   

5.
On the capacity of OFDM-based spatial multiplexing systems   总被引:4,自引:0,他引:4  
This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver. Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity. We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity. Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels  相似文献   

6.
Approximately universal codes over slow-fading channels   总被引:2,自引:0,他引:2  
Performance of reliable communication over a coherent slow-fading multiple-input multiple-output (MIMO) channel at high signal-to-noise ratio (SNR) is succinctly captured as a fundamental tradeoff between diversity and multiplexing gains. This paper studies the problem of designing codes that optimally tradeoff the diversity and multiplexing gains. The main contribution is a precise characterization of codes that are universally tradeoff-optimal, i.e., they optimally tradeoff the diversity and multiplexing gains for every statistical characterization of the fading channel. This characterization is referred to as approximate universality; the approximation is in the connection between error probability and outage capacity with diversity and multiplexing gains, respectively. The characterization of approximate universality is then used to construct new coding schemes as well as to show optimality of several schemes proposed in the space-time coding literature.  相似文献   

7.
MIMO系统中线性弥散空时码的优化设计   总被引:1,自引:0,他引:1  
王骐 《电讯技术》2007,47(3):141-144
MIMO系统的大部分空时编码方法在设计时单一强调对传输分集性能或传输复用性能的提高,为了联合提高分集性能和复用性能,在LDC编码基础上提出了线性正交弥散空时码(OLDC),LDC编码的优化中利用遗传算法来构造OLDC的空时正交调制基矩阵.优化的编码方法设计简单,便于调制解调.仿真结果表明,OLDC码比传统的LDC编码在误码性能、分集性能、复用性能等方面均有大幅度提高.  相似文献   

8.
Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMO profiles employing 2times2 space-time codes (STCs) and two of those are mandatory on the downlink of Mobile WiMAX systems. Conventional approaches to STC design are based on performance criteria such as coding gain, diversity gain, multiplexing gain, and ignore the decoder complexity. In this paper, we take an alternative approach and present a full-rate full-diversity 2times2 STC design leading to substantially lower complexity of the optimum detector than existing schemes. This makes the implementation of high performance full-rate codes realistic in practical systems.  相似文献   

9.
A nonasymptotic framework is presented to analyze the diversity-multiplexing tradeoff of a multiple-input-multiple-output (MIMO) wireless system at finite signal-to-noise ratios (SNRs). The target data rate at each SNR is proportional to the capacity of an additive white Gaussian noise (AWGN) channel with an array gain. The proportionality constant, which can be interpreted as a finite-SNR spatial multiplexing gain, dictates the sensitivity of the rate adaptation policy to SNR. The diversity gain as a function of SNR for a fixed multiplexing gain is defined by the negative slope of the outage probability versus SNR curve on a log-log scale. The finite-SNR diversity gain provides an estimate of the additional power required to decrease the outage probability by a target amount. For general MIMO systems, lower bounds on the outage probabilities in correlated Rayleigh fading and Rician fading are used to estimate the diversity gain as a function of multiplexing gain and SNR. In addition, exact diversity gain expressions are determined for orthogonal space-time block codes (OSTBC). Spatial correlation significantly lowers the achievable diversity gain at finite SNR when compared to high-SNR asymptotic values. The presence of line-of-sight (LOS) components in Rician fading yields diversity gains higher than high-SNR asymptotic values at some SNRs and multiplexing gains while resulting in diversity gains near zero for multiplexing gains larger than unity. Furthermore, as the multiplexing gain approaches zero, the normalized limiting diversity gain, which can be interpreted in terms of the wideband slope and the high-SNR slope of spectral efficiency, exhibits slow convergence with SNR to the high-SNR asymptotic value. This finite-SNR framework for the diversity-multiplexing tradeoff is useful in MIMO system design for realistic SNRs and propagation environments  相似文献   

10.
The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last decade - both in academia and industry. Multiple antennas can be utilized in order to accomplish a multiplexing gain, a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference ratio of wireless systems, respectively. With an enormous amount of yearly publications, the field of multiple-antenna systems, often called multiple-input multiple-output (MIMO) systems, has evolved rapidly. To date, there are numerous papers on the performance limits of MIMO systems, and an abundance of transmitter and receiver concepts has been proposed. The objective of this literature survey is to provide non-specialists working in the general area of digital communications with a comprehensive overview of this exciting research field. To this end, the last ten years of research efforts are recapitulated, with focus on spatial multiplexing and spatial diversity techniques. In particular, topics such as transmitter and receiver structures, channel coding, MIMO techniques for frequency-selective fading channels, diversity reception and space-time coding techniques, differential and non-coherent schemes, beamforming techniques and closedloop MIMO techniques, cooperative diversity schemes, as well as practical aspects influencing the performance of multiple-antenna systems are addressed. Although the list of references is certainly not intended to be exhaustive, the publications cited will serve as a good starting point for further reading.  相似文献   

11.
In general, multiplexing and diversity gains of single user MIMO systems are restricted by min(M,N) where M, N denote the number of antenna elements at a transmitter and receiver, respectively. In order to increase the multiplexing/diversity gains and improve the performance of single user MIMO systems, a joint pre-processing co-channel interference cancellation (JPCIC) method is proposed. The JPCIC is analyzed in both the perfect and the imperfect channel state information. The dependence of channel capacity on the number of antenna elements in every subset, the number of subsets, transmit powers and channel estimation errors is discussed. As theoretical calculation result, the channel capacity increases when the multiplexing/diversity gains and/or the transmit power increase in a certain channel model whether the channel estimation error is absent or present. Compared to the conventional zero-forcing method, the channel capacity of JPCIC is considerably higher because of higher multiplexing/diversity gains, however, it is less robust and decreased more rapidly due to incomplete cancellation of interference terms when the channel estimation error increases. There is a trade-off between the channel capacity and the complexity of system, however, according to quick development in circuit techniques and miniaturization of devices, the JPCIC is expected to be an attractive technology for MIMO system.  相似文献   

12.
This paper considers the problem of space-frequency code design for frequency-selective multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) modulation. We show that space-time codes achieving full diversity in quasistatic flat fading environment can be used to construct space-frequency codes that can achieve the maximum diversity available in frequency-selective MIMO fading channels. Since the codes are constructed via a simple mapping from space-time codes to space-frequency codes, the abundant classes of existing space-time block and trellis codes can be used for full diversity transmission in MIMO-OFDM systems. The proposed mapping provides a tradeoff between the achieved diversity order and the symbol rate. Moreover, we characterize the performance of the space-frequency codes obtained via the mapping by finding lower and upper bounds on their coding advantages as functions of the coding advantages of the underlying space-time codes. This result will allow us to investigate the effects of the delay distribution and the power distribution of the channel impulse responses on the performance of the resulting space-frequency codes. Extensive simulation results are also presented to illustrate and support the theory.  相似文献   

13.
Multiple-input multiple-output (MIMO) antenna systems employ spatial multiplexing to increase spectral efficiency or transmit diversity to improve link reliability. The performance of these signaling strategies is highly dependent on MIMO channel characteristics, which, in turn, depend on antenna height and spacing and richness of scattering. In practice, large antenna spacings are often required to achieve significant multiplexing or diversity gain. The use of dual-polarized antennas (polarization diversity) is a promising cost- and space-effective alternative, where two spatially separated uni-polarized antennas are replaced by a single antenna structure employing orthogonal polarizations. This paper investigates the performance of spatial multiplexing and transmit diversity (Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) scheme) in MIMO wireless systems employing dual-polarized antennas. In particular, we derive estimates for the uncoded average symbol error rate of spatial multiplexing and transmit diversity and identify channel conditions where the use of polarization diversity yields performance improvements. We show that while improvements in terms of symbol error rate of up to an order of magnitude are possible in the case of spatial multiplexing, the presence of polarization diversity generally incurs a performance loss for transmit diversity techniques. Finally, we provide simulation results to demonstrate that our estimates closely match the actual symbol error rates.  相似文献   

14.
Broadband MIMO-OFDM wireless communications   总被引:48,自引:0,他引:48  
Orthogonal frequency division multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-varying and frequency-selective channels, resulting in a multiple-input multiple-output (MIMO) configuration. The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, space-time techniques for MIMO-OFDM, error control coding techniques, OFDM preamble and packet design, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in MIMO-OFDM systems. Finally, the paper considers a software radio implementation of MIMO-OFDM.  相似文献   

15.
Full-diversity full-rate complex-field space-time coding   总被引:9,自引:0,他引:9  
Exciting developments in wireless multiantenna communications have led to designs aiming mainly at one of two objectives: either high-performance by enabling the diversity provided by multi-input multi-output (MIMO) channels or high-rates by capitalizing on space-time multiplexing gains to realize the high capacity of MIMO fading channels. By concatenating a linear complex-field coder (a.k.a. linear precoder) with a layered space-time mapper, we design systems capable of achieving both goals: full-diversity and full-rate (FDFR), with any number of transmit- and receive-antennas. We develop FDFR designs not only for flat-fading but for frequency-selective, or, time-selective fading MIMO channels as well. Furthermore, we establish the flexibility of our FDFR designs in striking desirable performance-rate-complexity tradeoffs. Our theoretical claims are confirmed by simulations.  相似文献   

16.
Orthogonal space-time block coding (STBC) is an open-loop transmit diversity scheme that decouples the multiple-input multiple-output (MIMO) channel, thereby reducing the space-time decoding into a scalar detection process. This characteristic of STBC makes it a powerful tool, achieving full diversity over MIMO fading channels, and requiring little computational cost for both the encoding and decoding processes. In this paper, we exploit the single-input single-output equivalency of STBC in order to analyze its performance over nonselective Nakagami fading channels in the presence of spatial fading correlation. More specifically, we derive exact closed-form expressions for the outage probability and ergodic capacity of STBC, when the latter is employed over spatially correlated MIMO Nakagami fading channels. Moreover, we derive the exact symbol error probability of coherent M-PSK and M-QAM, when these modulation schemes are used along with STBC over such fading channels. The derived formulae are then used to assess the robustness of STBC to spatial correlation by considering general MIMO correlation models and analyzing their effects on the outage probability, ergodic capacity, and symbol error probability achieved by STBC.  相似文献   

17.
In recent years, extensive studies have been done to design space-time codes appropriate for communications over fading channels in multiple input-multiple output (MIMO) systems. Most of these designs have been based upon the assumption that the channel fading coefficients are uncorrelated hence independent jointly Gaussian random variables. Naturally the best strategy in such situations that the elements of the channel matrix are independent is to employ diversity techniques to combat the adverse effects of these fading media and thus the most famous space-time codes, i.e. orthogonal and trellis codes have been designed with an eye to realizing the maximum attainable diversity order in a MIMO system. In this paper, we will remove this practically difficult to meet condition and shall introduce a new linear space-time block code based on zero-padding and unitary transforms that due to having some inherent redundancy as well as diversity is better-suited to correlated fading channels. We will discuss the properties of the proposed code, derive its maximum likelihood (ML) decoder and provide simulation results which show its superiority over the highly used orthogonal space-time block codes in a wide range of signal to noise ratios in correlated fading channels.  相似文献   

18.
A framework is developed for optimizing the tradeoff between diversity, multiplexing, and delay in multiple-input multiple-output (MIMO) systems to minimize end-to-end distortion. The goal is to find the optimal balance between the increased data rate provided by antenna multiplexing, the reduction in transmission errors provided by antenna diversity and automatic repeat request (ARQ), and the delay introduced by ARQ. First, closed-form analytical results are developed to minimize end-to-end distortion of a vector quantizer concatenated with a space-time MIMO channel code in the high SNR regime. The minimization determines the optimal point on the diversity-multiplexing tradeoff curve. For large but finite SNR this optimal point is found via convex optimization, which is illustrated with an example of a practical joint source-channel code design. It is then shown that for MIMO systems with ARQ retransmission, sources without a delay constraint have distortion minimized by maximizing the ARQ window size. This results in a new multiplexing-diversity tradeoff region enhanced by ARQ. However, under a source delay constraint the problem formulation changes to account for delay distortion associated with random message arrival and random ARQ completion times. In this case, the simplifications associated with a high SNR assumption break down, and a dynamic programming formulation is required to capture the channel diversity-multiplexing tradeoff as well as the random arrival and retransmission dynamics. Results based on this formulation show that a delay-sensitive system obtains significant performance gains by adapting its operating point on the diversity-multiplexing-delay region to system dynamics.  相似文献   

19.
The multi-input multi-output–orthogonal frequency division multiplexing (MIMO–OFDM) system serves as one of the most promising techniques that support high data rate and high performance in diverse fading channel conditions. The paper presents an overview of MIMO–OFDM wireless technology, covering advances in physical-layer design, various space–time codes, space–frequency codes and efficient concatenated forward error correction techniques, along with interleaving to yield reduced bit error rate performance (BER). Further, the paper presents the evolution of various performance metrics that are reported since the 2000s in the literature. The evolution outcome is examined using a quadratic nonlinear fitting function to assess the interesting performance metrics. Since BER versus SNR analysis is found as the interesting performance study of the MIMO–OFDM system, the current status of the achieved BER under varying SNR is reviewed and presented.  相似文献   

20.
The authors introduced an algebraic design framework for space-time coding in flat-fading channels . We extend this framework to design algebraic codes for multiple-input multiple-output (MIMO) frequency-selective fading channels. The proposed codes strive to optimally exploit both the spatial and frequency diversity available in the channel. We consider two design approaches: The first uses space-time coding and maximum likelihood decoding to exploit the multi-path nature of the channel at the expense of increased receiver complexity. Within this time domain framework, we also propose a serially concatenated coding construction which is shown to offer a performance gain with a reasonable complexity iterative receiver in some scenarios. The second approach utilizes the orthogonal frequency division multiplexing technique to transform the MIMO multipath channel into a MIMO flat block fading channel. The algebraic framework is then used to construct space-frequency codes (SFC) that optimally exploit the diversity available in the resulting flat block fading channel. Finally, the two approaches are compared in terms of decoder complexity, maximum achievable diversity advantage, and simulated frame error rate performance in certain representative scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号