首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reverse transformation characteristics of a low-carbon steel consisting of ultrafine-grained (UFG) ferrite and severely deformed pearlite by severe plastic deformation were investigated and compared to those of the steel having coarse-grained (CG) ferrite and undeformed pearlite by austenitization and subsequent air cooling. Coarse-grained steel exhibited two serial transformation stages, i.e., pear-lite → austenite followed by ferrite → austenite. Contrarily, UFG steel transformed with the three serial stages, i.e., probably carbon-supersaturated ferrite → austenite, not-fully-dissolved pearlite → austenite, and ferrite → austenite transformations.  相似文献   

2.
Behavior of pearlite of various morphologies during cyclic tension   总被引:1,自引:0,他引:1  
The structural evolution of hypereutectoid U10 steel with a pearlitic structure of various types (fine lamellar or partly spheroidized pearlite) is studied during fatigue loading. The fracture of these structures is considered using fractography data. The specific features of the structural transformations and the changes in the dislocation structure of the U10 steel are revealed during cyclic tension in the high-cycle fatigue region at a significant distance (10 mm) from a fatigue fracture surface. Substantial structural changes are shown to occur in U10 steel with various pearlitic structures during high-cycle fatigue tests (tension at a stress amplitude in a cycle lower than the macroscopic yield strength). These are the fragmentation, partial dissolution, and spheroidization of cementite lamellae and the polygonization of the ferrite component. The relationship between the type of fracture surface and the type of structure formed upon fatigue loading is found.  相似文献   

3.
The decomposition of the β phase in rapidly quenched Ti-2.8 at. pct Co, Ti-5.4 at. pct Ni, Ti-4.5 at. pct, and 5.5 at. pct Cu alloys has been investigated by electron microscopy. During rapid quenching, two compctitive phase transformations, namely martensitic and eutectoid transformation, have occurred, and the region of eutectoid transformation is extended due to the high cooling rates involved. The β phase decomposed into nonlamellar eutectoid product (bainite) having a globular morphology in Ti-2.8 pct Co and Ti-4.5 pct Cu (hypoeutectoid) alloys. In the near-eutectoid Ti-5.5 pct Cu alloy, the decomposition occurred by a lamellar (pearlite) type, whereas in Ti-5.4 pct Ni (hypereutectoid), both morphologies were observed. The interfaces between the proeutectoid α and the intermetallic compound in the nonlamellar type as well as between the proeutectoid α and the pearlite were often found to be partially coherent. These findings are in agreement with the Lee and Aaronson model proposed recently for the evolution of bainite and pearlite structures during the solid-state transformations of some titanium-eutectoid alloys. The evolution of the Ti2Cu phase during rapid quenching involved the formation of a metastable phase closely related to an “ω-type” phase before the equilibrium phase formed. Further, the lamellar intermetallic compound Ti2Cu was found to evolve by a sympathetic nucleation process. Evidence is established for the sympathetic nucleation of the proeutectoid a crystals formed during rapid quenching.  相似文献   

4.
郭佳  杨善武  尚成嘉  王郢  贺信莱 《钢铁》2008,43(9):58-0
 研究了碳含量不同和显微组织不同的低合金钢的耐腐蚀性能和腐蚀行为,并和商业耐候钢09CuPCrNi做了相应的比较。在碳含量比较低的情况下,组织类型对试验钢的耐蚀性影响不大;碳含量比较高时,单相贝氏体钢的耐蚀性优于由铁素体、渗碳体(珠光体)等构成的复相组织钢。轧后水冷时,不同碳含量的钢耐蚀性差别不大;轧后空冷时,碳含量低的钢的耐蚀性优于碳含量较高的钢。用扫描电镜对锈层进行观察,可以看出耐蚀性较好的试样在腐蚀后期形成了较致密的内锈层。碳的质量分数分别为0.03%和0.1%的钢水冷后的平均腐蚀速率相差很小,但从微观角度看其点蚀发展趋势不同。加速腐蚀5个周期后,w(C)为003%的水冷钢中蚀坑尺寸不再增加,而w(C)为01%的钢中蚀坑尺寸仍有增加趋势。  相似文献   

5.
Polarization pitting corrosion tests are used to investigate the effect of a structure on the corrosion resistance of hypereutectoid U10 steel. In the steel structure, coarse-lamellar and fine-lamellar pearlite forms as a result of isothermal decomposition at temperatures of 500 and 650°C and fine-lamellar pearlite forms during additional annealing at 650°C for 10 or 300 min. The nonequilibrium structure of fine-lamellar pearlite obtained in the process of isothermal decomposition at a temperature of 500°C is found to have the maximum pitting corrosion resistance among the structural states under study.  相似文献   

6.
研究了不同冷却速率和冷却温度对热轧态SA-210Gr.C钢中铁素体、珠光体带状组织的形成规律。为了保证奥氏体向铁素体、珠光体组织转变,试样经快速冷却至一定温度,然后采取空冷的处理工艺。试验结果表明,快速冷却处理可以有效地抑制带状组织的形成,但是需要控制冷却速率以及冷却温度。虽然试样经过快速冷却处理后会形成一定量的魏氏组织,但是其冲击性能并没有显著降低。  相似文献   

7.
The development of microstructural banding in low-alloy steel with Mn segregation has been investigated through the use of artificially segregated steel, interrupted cooling techniques, and optical microscopy. Mn segregation was simulated by hot roll bonding thin sheets of 5140 steel with 0.82 wt pct Mn and modified 5140M with 1.83 wt pct Mn into a plate with 20- and 160-μm-thick segregated layers. Samples were austenitized at 850 °C, continuously cooled at 1 °C/s and 0.1 °C/s, and quenched from progressively lower temperatures to observe the evolution of the microstructure. The segregated band thickness had a striking effect on microstructural development. Samples with 160 μm bands cooled at 1 °C/s had martensite and bainite in high-Mn bands. In contrast, samples with 20 μm bands cooled at the same rate had pearlite in high-Mn bands. The dramatic effect of band thickness on microstructural development was due to growth of a fully pearlitic band at the interface between segregated layers. The formation of interfacial pearlite is discussed relative to redistribution of carbon between adjacent high- and low-Mn bands during cooling.  相似文献   

8.
Lower bainite with midrib in hypereutectoid steels   总被引:1,自引:0,他引:1  
The isothermal transformations in five hypereutectoid steels (0.85 to 1.80 wt pct C) have been studied in the temperature range between 623 and 333 K. Two types of lower bainite and a thin plate isothermal martensite were observed. One of the lower bainites was the conventional lower bainite (CLB) formed at the high temperature range of 623 to 473 K, and the other was the newly named “lower bainite with midrib” (LBm) formed at the lower temperature range of 473 to 423 K. The thin plate isothermal martensite (TIM) was also observed below 373 K. This paper brought LBm into focus. Arrhenius plots (transformation ratevs l/T) for each steel revealed an abrupt change in kinetics at the temperature range between 483 and 443 K. This change was considered to correspond to the transition from CLB to LBm. The following two-stage process for the LBm formation is proposed: at the first stage a TIM is formed, which constitutes a midrib of LBm, and secondly the bainitic decomposition of austenite at TIM/austenite interfaces takes place. That is, an LBm is a composite of isothermal martensite and lower bainite.  相似文献   

9.
The effect of prior-austenite grain size and transformation temperature on nodule size and colony size of hypereutectoid steels containing 1 pct carbon with different levels of vanadium and silicon was investigated. Specimens of the various steels were thermally processed at various temperatures ranging from 900 °C to 1200 °C and transferred to salt bath conditions at 550 °C, 580 °C, and 620 °C to examine the structural evolution of pearlite. The heat-treatment work showed that for only the hypereutectoid steel without vanadium there was a continuous grain boundary cementite network, the thickness of which increased with increasing reheat temperature. Analysis of the thermally processed hypereutectoid steels also indicated that the prior-austenite grain size and transformation temperature controlled the nodule size, while the colony size was dependent on the latter only.  相似文献   

10.
The precipitation of γ 2 phase in Cu-Al β-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the γ precipitates were formed in the dendritic shape when Cu-Zn β-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. We have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the β-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, γ-phase alloys in Cu-Sn and Ag-Cd systems, and δ-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.  相似文献   

11.
Austenite nucleation sites were investigated in near-eutectoid 0.8 mass pct C steel and hypoeutectoid 0.4 mass pct C steel samples with full pearlite and ferrite–pearlite initial structures, respectively. In particular, the prior austenite grain size had been coarsened to compare grain boundaries in the hierarchical pearlite structure, i.e., the low-angle pearlite colony and high-angle block boundaries with ferrite/pearlite interfaces in the austenite nucleation ability. When the full pearlite in 0.8 mass pct C steel underwent reversion at a relatively low temperature, austenite grains preferentially formed at pearlite block boundaries. Consequently, when the full pearlite with the coarse block structure underwent reversion just above the eutectoid temperature, the reversion took a long time due to the low nucleation density. However, austenite grains densely formed at the pearlite colony boundaries as well, as the reversion temperature became sufficiently high. On the other hand, when ferrite–pearlite in the 0.4 mass pct C steel underwent reversion to austenite, the ferrite/pearlite interface acted as a more preferential austenite nucleation site than the pearlite block boundary even in the case of low-temperature reversion. From these results, it can be concluded that the preferential austenite nucleation site in carbon steels is in the following order: ferrite/pearlite interface?>?pearlite block?>?colony boundaries. In addition, orientation analysis results revealed that ferrite restricts the austenite nucleation more strongly than pearlitic ferrite does, which contributes to the preferential nucleation at ferrite/pearlite interfaces. This suggests that austenite grains formed at a ferrite/pearlite interface tend to have an identical orientation even under high-temperature reversion. Therefore, it is thought that the activation of austenite nucleation within pearlite by increasing the reversion temperature may be effective for rapid austenitization and the grain refinement of austenite structure after the completion of reversion in carbon steels.  相似文献   

12.
The methods of reaching a high hardness, which is the main characteristic determining the service resistance of rolling tools (sheet mill rolls, cogging-down rolls, the mandrels of cold-rolling tube mills, etc.), in low-alloy hypereutectoid steels are theoretically grounded. The “ultrahigh hardness” effect is shown to be achieved when the structure of a steel is preliminarily prepared and a disperse ferrite-cementite mixture forms in it. This structure is achieved upon special-purpose quenching followed by medium tempering. As a result of such a nonstandard heat treatment, carbide particles become an order of magnitude smaller than the secondary carbides that form upon conventional annealing. The steel grades to be subjected to the additional treatment are listed, and specific technological procedures that provide an increase in the hardness of quenched hypereutectoid steels are described. As a result, a hardness of 68–69 HRC is reached in experimental samples of commercial ShKh15 steel.  相似文献   

13.
The effectiveness of MIG welding with Argo‐shield gas & ER70S‐6 electrode in joining LRS (Grade‐B) steel was investigated through structure–property correlation of the joint region. Microstructure, tensile and fatigue properties, and mode of fracture (SEM fractograph) were correlated. Fatigue behavior has been investigated in air and sea water with thin specimen at near‐endurance stress amplitude up to 105 cycles. The crack growth rate (da/dN) maintained a non‐linear relationship with logarithm of stress intensity factor range (logΔK) for the near‐threshold values of ΔK. Considerable hardness and microstructural variation was observed across the weldment. Weld with more pearlite content was found to possess higher hardness and strength than the parent steel. Though, both in weld and in parent steel, either in air or in sea water, fatigue crack propagated at very slow rate with significant intermittent crack arrest, weld provided much higher resistance to crack growth in air. However, sea water accelerated the crack growth in weld and brought it closer to that in the parent steel. The morphologically complex microstructure of weld suffered much faster crack propagation in sea water than in air. While fatigue fracture in parent steel (both in air and sea water) and weld in air was found to occur through dimple rupture via microvoid coalescence, weld in sea water exhibited a mixed mode of failure.  相似文献   

14.
Pearlite in ultrahigh carbon steels: Heat treatments and mechanical properties   总被引:11,自引:0,他引:11  
Two ultrahigh carbon steel (UHCS) alloys containing 1.5 and 1.8 wt pct carbon, respectively, were studied. These materials were processed into fully spheroidized microstructures and were then given heat treatments to form pearlite. The mechanical properties of the heat-treated materials were evaluated by tension tests at room temperature. Use of the hypereutectoid austenite-cementite to pearlite transformation enabled achievement of pearlitic microstructures with various interlamellar spacings. The yield strengths of the pearlitic steels are found to correlate with a predictive relation based on interlamellar spacing and pearlite colony size. Decreasing the pearlite interlamellar spacing increases the yield strength and the ultimate strength and decreases the tensile ductility. It is shown that solid solution alloying strongly influences the strength of pearlitic steels.  相似文献   

15.
16.
The kinetics and metallography of isothermal transformations in four hypereutectoid steels (0.85 to 1.80 wt pct C) have been studied in the temperature range between 623 and 333 K. Isothermal transformation diagrams for each steel were constructed by means of dilatometry and microscopy. It was found that the C curve, the reverse in kinetics, which has been called “Swing Back”, appeared at the temperature near the in each steel. This paper focuses on the swing back phenomena appearing in four steels. The nose temperatures of C curves nearin 0.85, 1.10, 1.45, and 1.80 wt pct C steels were determined to be about 520, 440, 400, and 375 K, respectively. It was clarified that the C curves near in 1.45 and 1.80 wt pct C steels were associated with the formations of lower bainite with midrib (LBm), thin-plate isothermal martensite (TIM), and leaf-like isothermal martensite (LIM), but those in 0.85 and 1.10 wt pct C steels were related to the formation of LBm. On the basis of the kinetics and metalography, the temperatureJcarbon-contentJtransformation diagram was constructed in the hypereutectoid range of steel.  相似文献   

17.
The effects of heating rate in the range of 0.3 to 693 °C/s on transformations during intercritical annealing of a cold-rolled 0.12C-1.4Mn-0.02Nb steel with either a ferrite-pearlite or ferrite-spheroidized carbide microstructure were evaluated. Heating rates were selected to impart different predicted degrees of ferrite recrystallization present at the onset of austenite formation. Rapid heating minimized ferrite recrystallization with both prior microstructures and minimized pearlite spheroidization in the ferrite-pearlite condition, and austenite formation occurred preferentially in recovered ferrite regions as opposed to along recrystallized ferrite boundaries. Martensite was evenly distributed in slowly heated steels because austenite formed on recrystallized, equiaxed, ferrite boundaries. With rapid heating, austenite formed in directionally oriented recovered ferrite, which increased the degree of banding. The greatest degree of banding was found with intermediate heating rates leading to partial recrystallization, because austenite formed preferentially in the remaining recovered ferrite, which was located in bands along the rolling direction. Ferrite-spheroidized carbide microstructures had somewhat reduced martensite banding when compared to the ferrite-pearlite condition, where elongated pearlite enhanced banded austenite leading to banding in transformed microstructures.  相似文献   

18.
王香彬  韦弦  孙斌  宋仁伯 《河南冶金》2011,19(2):16-18,47
在Gleeble-1500热力模拟试验机上,利用热膨胀法测定了两种含Mo低碳贝氏体钢在850℃变形30%后再以不同冷却速度冷却到室温的连续冷却相变曲线(CCT曲线),在Axiovert 200 MAT光学显微镜下检测冷却后的组织.结果表明,奥氏体化的低碳钢低速冷却后的组织主要由粗大的铁素体和少量颗粒状珠光体组成;提高连...  相似文献   

19.
As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85-μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.  相似文献   

20.
中碳钢球化退火行为和力学性能的研究   总被引:10,自引:0,他引:10  
采用常规双相区球化退火和亚温球化退火工艺研究了常规轧制(CR)和控轧控冷(CRC)的中碳钢SWRCH35K的球化退火行为和力学性能。结果表明,与传统的双相区球化退火相比,亚温球化退火时碳化物球化进程明显加快,球化率高,且碳化物比较细小,具有良好的塑性和冷成形性,采用亚温球化退火处理可明显地缩短球化退火时间。控轧控冷的中碳钢线材尽管具有比较粗大的珠光体组织,但因有相当部分的珠光体发生退化,其球化退火进程要明显快于细珠光体组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号