首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated a preparation method of giant vesicles using monodisperse water-in-oil (W/O) emulsions stabilized by bilayer-forming emulsifiers. A mixture of phosphatidylcholine, cholesterol and stearylamine was used both to stabilize the water droplets formed in the emulsion and to form the vesicles. Using this lipid mixture, we obtained monodisperse W/O emulsions with mean droplet diameters of 10–40 μm and coefficients of variation as small as ca 5% by means of the microchannel (MC) emulsification technique. Utilization of an asymmetric straight-through MC array device enabled a monodisperse droplet productivity of up to 80 ml/h. The obtained water droplets were converted to giant vesicles via evaporative removal of the continuous-phase solvent followed by addition of an aqueous buffer solution. The resulting vesicles were similar in size to their starting water droplets, and a hydrophilic fluorescent marker was entrapped inside the vesicles.  相似文献   

2.
Micro-droplet formation from an aperture with a diameter of micrometers is numerically investigated under the cross-flow conditions of an experimental microchannel emulsification process. The process involves dispersing an oil phase into continuous phase fluid through a microchannel wall made of apertured substrate. Cross-flow in the microchannel is of non-Newtonian nature, which is included in the simulations. Micro-droplets of diameter 0.76–30 μm are obtained from the simulations for the apertures of diameter 0.1–10.0 μm. The simulation results show that rheology of the bulk liquid flow greatly affects the formation and size of droplets and that dispersed micro-droplets are formed by two different breakup mechanisms: in dripping regime and in jetting regime characterized by capillary number Ca. Relations between droplet size, aperture opening size, interfacial tension, bulk flow rheology, and disperse phase flow rate are discussed based on the simulation and the experimental results. Data and models from literature on membrane emulsification and T-junction droplet formation processes are discussed and compared with the present results. Detailed force balance models are discussed. Scaling factor for predicting droplet size is suggested.  相似文献   

3.
The authors recently proposed a promising technique for producing monodisperse emulsions using a straight-through microchannel (MC) device composed of an array of microfabricated oblong holes. This research developed new straight-through MC devices with tens of thousands of oblong channels of several microns in size on a silicon-on-insulator plate, and investigated the emulsification characteristics using the microfabricated straight-through MC devices. Monodisperse oil-in-water (O/W) and W/O emulsions with average droplet diameters of 4.4–9.8 μm and coefficients of variation of less than 6% were stably produced using surface-treated straight-through MC devices that included uniformly sized oblong channels with equivalent diameters of 1.7–5.4 μm. The droplet size of the resultant emulsions depended greatly on the size of the preceding oblong channels. The emulsification process using the straight-through MC devices developed in this research had very high apparent energy efficiencies of 47–60%, defined as (actual energy input applied to droplet generation/theoretical minimum energy input necessary for making droplets) × 100. Straight-through MC devices with numerous oblong microfluidic channels also have great potential for increasing the productivity of monodisperse fine emulsions.  相似文献   

4.
This paper reports the production of monodisperse water-in-oil (W/O) emulsions using new microchannel emulsification (MCE) devices, asymmetric straight-through MC arrays that were hydrophobically modified. The silicon asymmetric straight-through MC arrays consisted of numerous pairs of microslots and circular microholes whose cross-sectional sizes were 10 μm. This paper primarily focused on investigating the effect of the osmotic pressure of a dispersed phase (Πd) on MCE. This paper also investigated the effects of the type of continuous-phase oils and the dispersed-phase flux (J d) on MCE. The dispersed phases were Milli-Q water and Milli-Q water solutions containing sodium chloride. The continuous phases were decane (as control), hexane, medium chain triacylglyceride (MCT), and refined soybean oil (RSO) solutions containing tetraglycerin monolaurate condensed ricinoleic acid ester (TGCR) as a surfactant. At Πd of exceeding threshold, highly uniform aqueous droplets with coefficients of variation of less than 3% were stably generated via hydrophobic asymmetric straight-through MCs. Monodisperse W/O emulsions with average droplet diameters between 32 and 45 μm were produced using the alkane–oil and triglyceride–oil solutions as the continuous phase. This work also demonstrated that the hydrophobic asymmetric straight-through MC array had remarkable ability to produce highly uniform aqueous droplets at very high J d of up to 1,200 L m−2 h−1.  相似文献   

5.
Monodisperse copolymer particles carrying surface carboxyl groups in the range of 50–200 μm were prepared by in situ UV polymerization of ethyleneglycol dimethacrylate (EGDMA) with acrylic acid (AA) via a microfluidic flow-focusing device (MFFD). The design of the coaxial orifices in the MFFD enables the confinement of the comonomer liquid thread to the central axis of the microchannel, which can avoid the wetting problem of comonomer liquid with the microchannel and can successfully produce monodisperse copolymer microspheres with coefficient of variance below 5%. The effects of concentration of EGDMA and AA on droplet diameters and the distribution of carboxyl group on particle surfaces were examined. It has been found that, increasing the concentration of AA would decrease particle sizes, but increase the distribution of carboxyl group on particle surfaces. Bioconjugation of the carboxylated copolymer particles with the anti-rabbit IgG–Cy3 conjugates was successfully demonstrated. By increasing the concentration of AA accompanied with decreasing the particle sizes, high efficiency of bioconjugation on carboxylated copolymer particles was achieved. The rapid continuous synthesis of carboxylated copolymer particles via a microfluidic device provides a reliable control of particle sizes and composition for massive production in biotechnological applications.  相似文献   

6.
We present a novel microchannel emulsification (MCE) system for mass-producing uniform fine droplets. A 60 × 60-mm MCE chip made of single-crystal silicon has 14 microchannel (MC) arrays and 1.2 × 104 MCs, and each MC array consists of many parallel MCs and a terrace. A holder with two inlet through-holes and one outlet through-hole was also developed for simply infusing each liquid and collecting emulsion products. The MCE chip was sealed well by physically attaching it to a flat glass plate in the holder during emulsification. Uniform fine droplets of soybean oil with an average diameter of 10 μm were reliably generated from all the MC arrays. The size of the resultant fine droplets was almost independent of the dispersed-phase flow rate below a critical value. The continuous-phase flow rate was unimportant for both the droplet generation and the droplet size. The MCE chip enabled mass-producing uniform fine droplets at 1.5 ml h−1 and 1.9 × 109 h−1, which could be further increased using a dispersed phase of low viscosity.  相似文献   

7.
This work for the first time describes a centrifugal technique for the production and manipulation of highly monodisperse water droplets (CV of droplet diameter below 2%) immersed in a continuous flow of immiscible oil. Within a given working range, droplet volumes (5–22 nL) and their mutual spacing is governed by the channel geometry and the frequency of rotation. Different regimes of liquid–liquid flows are presented. We also demonstrate capabilities like droplet splitting and sedimentation as well as the production of two colored droplets, thus setting the stage for a novel centrifugal platform for multiphase flows.  相似文献   

8.
Uniformly sized droplets of soybean oil, MCT (medium-chain fatty acid triglyceride) oil and n-tetradecane with a Sauter mean diameter of d 3,2 = 26–35 μm and a distribution span of 0.21–0.25 have been produced at high throughputs using a 24 × 24 mm silicon microchannel plate consisting of 23,348 asymmetric channels fabricated by photolithography and deep reactive ion etching. Each channel consisted of a 10-μm diameter straight-through micro-hole with a length of 70 μm and a 50 × 10 μm micro-slot with a depth of 30 μm at the outlet of each channel. The maximum dispersed phase flux for monodisperse emulsion generation increased with decreasing dispersed phase viscosity and ranged from over 120 L m−2 h−1 for soybean oil to 2,700 L m−2 h−1 for n-tetradecane. The droplet generation frequency showed significant channel to channel variations and increased with decreasing viscosity of the dispersed phase. For n-tetradecane, the maximum mean droplet generation frequency was 250 Hz per single active channel, corresponding to the overall throughput in the device of 3.2 million droplets per second. The proportion of active channels at high throughputs approached 100% for soybean oil and MCT oil, and 50% for n-tetradecane. The agreement between the experimental and CFD (Computational Fluid Dynamics) results was excellent for soybean oil and the poorest for n-tetradecane.  相似文献   

9.
Gas flows over a wide range of Knudsen numbers (~0.5–10) are studied using silicon nanochannel arrays with slit-shaped pores. The pore sizes of the silicon nanochannel arrays range from micrometer to sub-10-nm scales. The flows are generated under conditions of room temperature and near-atmospheric pressure (~22°C and ~101–115 kPa) and span the continuum flow, continuum-slip flow, transition flow and free-molecular flow regimes. The measured flow rates of helium, argon and carbon dioxide are in good agreement with a theoretical model (Unified Slip Model) proposed by Beskok and Karniadakis (Nanoscale Microscale Thermophys Eng 3:43–77, 1999).  相似文献   

10.
This article describes the generation of microdispersed bubbles and droplets in a double T-junctions microfluidic device to form immiscible gas/liquid/liquid three-phase flowing systems. Segmented gas plugs are controllably prepared in water at the first T-junction to form gas/liquid two-phase fluid with the perpendicular flow cutting method. Then using this two-phase fluid as the cross-shearing fluid for the oil phase at the second T-junction, the gas/liquid/liquid three-phase flowing systems are prepared. Interestingly, it is found that the break-up of the oil droplets is mainly dominated by the cutting effect of the gas/liquid interface or the pressure drop across the emerging droplet, but independent with the viscous shearing effect of the continuous phase, even at the capillary number (Ca = u wμwow) higher than 0.01. The size laws and the distributions of the bubbles and droplets are investigated carefully, and a mathematical model has been developed to relating the operating conditions with the dispersed sizes.  相似文献   

11.
A numerical study of an electrothermal vortex enhanced micromixer   总被引:1,自引:1,他引:0  
Temperature gradients aroused from the Joule heating in a non-uniform electrical field can induce inhomogeneities of electric conductivity and permittivity of the electrolyte, thus causing an electrothermal force that generates flow motion. A 2D numerical investigation of a micromixer, utilizing electrothermal effect to enhance its mixing efficiency, is proposed in this paper. Results for temperature and velocity distributions, as well as sample concentration distribution are obtained for an electrolyte solution in a microchannel with different pairs of electrodes under AC potentials with various frequencies. Numerical solutions were first carried out for one pair of electrodes, with a length of 10 μm separated by a gap of 10 μm, on one side wall of a microchannel having a length of 200 μm and a height of 50 μm. It is found that the electrothermal flow effect, in the frequency range for which Coulomb force is predominant, induces vortex motion near the electrodes, thus stirring the flow streams and enhancing its mixing efficiency. If more than one pair of electrodes is located on the opposite walls of the microchannel, the mixing efficiency depends on the AC potential applied pattern and the electrodes arrangement pattern. The distance between two pairs of electrodes on two opposite walls is then optimized numerically. Sample mixing efficiencies, using KCl solutions as the working fluid in microchannels with different number of electrodes pairs at optimal electrodes arrangement pattern, are also investigated. If root mean squared voltages of 10 V in an AC frequency range of 0.1–10 MHz are imposed on 16 pairs of electrodes separated at an optimal distance, the numerical results show that a mixing efficiency of 98% can be achieved at the end of the microchannel having a length of 700 μm and a height of 50 μm at Re = 0.01 Pe C = 100, and Pe T = 0.07. However, the mixing efficiency decreases sharply at a frequency higher than 10 MHz owing to the drastically decrease in the Coulomb force.  相似文献   

12.
For further understanding the dispersion process in the T-shaped microfluidic device, a double-pore T-shaped microchannel was designed and tested with octane/water system to form monodispersed plugs and droplets in this work. The liquid–liquid two-phase flow patterns were investigated and it was found that only short plugs, relative length L/w < 1.4, were produced. Additionally, the droplets flow was realized at phase ratios (F C /F D) just higher than 0.5, which is much smaller than that in the single-pore T-shaped microchannels. A repulsed effect between the initial droplets was observed in the droplet formation process and the periodic fluctuation flow of the dispersed phase was discussed by analyzing the resistances. Besides, the effect of the two-phase flow rates on the plug length and the droplet diameter was investigated. Considering the mutual effect of the initial droplets and the equilibrium between the shearing force with the interfacial tension, phase ratio and Ca number were introduced into the semi-empirical models to present the plug and droplet sizes at different operating conditions.  相似文献   

13.
Surface tension driven capillary flow from a pendant droplet into a horizontal glass capillary is investigated in this paper. Effect of the droplet surface on dynamic behavior of such capillary flow is examined and compared with surface tension driven capillary flow from an infinite reservoir. In the experiment, capillaries of 300–700 μm in diameter were used with glycerol–DI water mixture solutions having viscosities ranging from 80 to 934 mPa s. It is observed that compared to the capillary flow from an infinite reservoir, the capillary flow from a droplet exhibits higher rates of meniscus displacement. This is due to an additional driving force resulted from change in droplet surface area (or curvature). The two main parameters influencing the flow are the dimensionless droplet geometry parameter (k) and the dynamic contact angle (θ D). The molecular kinetics theory of Blake and De Coninck’s model [Adv Colloid Interface Sci 96(1–3):21–36, 2002] is used to interpret the dynamic contact angle. This theory considers a molecular friction coefficient (ζ) at the liquid front flowing over a solid surface. Moreover, three models are proposed to describe the shape of the pendant droplet during capillary action. It is found that the egg-shaped model provides a more realistic model to compute the shape of the pendant droplet deformed during the capillary action. Thus the predictions by the egg-shaped model are in good agreement with the experimental data.  相似文献   

14.
Microfluidic phase change valve with a two-level cooling/heating system   总被引:1,自引:1,他引:0  
A phase change (PC) microvalve with an integrated two-level cooling/heating system is developed for microfluidic applications in this article. This PC microvalve utilizes the liquid–solid PC of a small portion of the working medium in a microchannel to switch on/off the flow in the microchannel. The size of the working medium for the PC microvalve is 5-mm long, 50-μm high, and 80-μm wide (50 μm × 80 μm is the cross-sectional area of the channel) in this study. The switch is actuated by using a two-level cooling/heating system integrated on the chip. The first-level cooling/heating unit keeps the working medium in the valve area in the temperature range of supercooling state. Based on the supercooling state, the second-level cooling/heating unit either heats up or cools down the medium in the valve area to trigger its PC between liquid and solid for valving purposes. The proposed microfluidic PC microvalve is characterized experimentally in microfluidic chips. The thermal impact of one PC microvalve in one particular microchannel on its adjacent channels is discussed by establishing a preliminary analytical model and a numerical model. In addition to no leakage and no moving element, this PC microvalve with a two-level cooling/heating system can achieve a very short cooling time (i.e., 2.72 s).  相似文献   

15.
Capillary filling is the key phenomenon in planar chromatography techniques such as paper chromatography and thin layer chromatography. Recent advances in micro/nanotechnologies allow the fabrication of nanoscale structures that can replace the traditional stationary phases such as paper, silica gel, alumina, or cellulose. Thus, understanding capillary filling in a nanochannel helps to advance the development of planar chromatography based on fabricated nanochannels. This paper reports an analysis of the capillary filling process in a nanochannel with consideration of electroviscous effect. In larger scale channels, where the thickness of electrical double layer (EDL) is much smaller than the characteristic length, the formation of the EDL plays an insignificant role in fluid flow. However, in nanochannels, where the EDL thickness is comparable to the characteristic length, its formation contributes to the increase in apparent viscosity of the flow. The results show that the filling process follows the Washburn’s equation, where the filled column is proportional to the square root of time, but with a higher apparent viscosity. It is shown that the electroviscous effect is most significant if the ratio between the channel height (h) and the Debye length (κ −1) reaches an optimum value (i.e. κh ≈ 4). The apparent viscosity is higher with higher zeta potential and lower ion mobility.  相似文献   

16.
This paper describes a novel technique for fabrication of micro- and nanofluidic device that consists of a carbon nanotube (CNT) and a polydimethylsiloxane (PDMS) microchannel. Single CNT was placed at desired locations using dielectrophoresis (DEP) and PDMS microchannel was constructed on the aligned CNT via photolithography and soft lithography techniques. This technique enables a CNT to be seamlessly embedded in a PDMS microchannel. Moreover, controlling the PDMS curing condition enables the construction of the device with or without a CNT (the device without CNT has a trace nanochannel in PDMS). Preliminary flow tests such as capillary effect and pressure-driven flow were performed with the fabricated devices. In the capillary effect tests, the flow stopped at the nanochannel in both devices. In the pressure-driven flow lower flow resistance was observed in the device with a CNT.  相似文献   

17.
In this paper, a model is presented that describes the pressure drop of gas–liquid Taylor flow in round capillaries with a channel diameter typically less than 1 mm. The analysis of Bretherton (J Fluid Mech 10:166–188, 1961) for the pressure drop over a single gas bubble for vanishing liquid film thickness is extended to include a non-negligible liquid film thickness using the analysis of Aussillous and Quéré (Phys Fluids 12(10):2367–2371, 2000). This result is combined with the Hagen–Poiseuille equation for liquid flow using a mass balance-based Taylor flow model previously developed by the authors (Warnier et al. in Chem Eng J 135S:S153–S158, 2007). The model presented in this paper includes the effect of the liquid slug length on the pressure drop similar to the model of Kreutzer et al. (AIChE J 51(9):2428–2440, 2005). Additionally, the gas bubble velocity is taken into account, thereby increasing the accuracy of the pressure drop predictions compared to those of the model of Kreutzer et al. Experimental data were obtained for nitrogen–water Taylor flow in a round glass channel with an inner diameter of 250 μm. The capillary number Ca gl varied between 2.3 × 10−3 and 8.8 × 10−3 and the Reynolds number Re gl varied between 41 and 159. The presented model describes the experimental results with an accuracy of ±4% of the measured values.  相似文献   

18.
Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions.  相似文献   

19.
Valves for autonomous capillary systems   总被引:2,自引:1,他引:1  
Autonomous capillary systems (CSs) are microfluidic systems inside which liquids move owing to capillary forces. CSs can in principle bring the high-performances of microfluidic-based analytical devices to near patient and environmental testing applications. In this paper, we show how wettable capillary valves can enhance CSs with novel functionalities, such as delaying and stopping liquids in microchannels. The valves employ an abruptly changing geometry of the flow path to delay a moving liquid filling front in a wettable microchannel. We show how to combine delay valves with capillary pumps, prevent shortcuts of liquid along the corners of microfluidic channels, stop liquids filling microchannels from a few seconds to over 30 min, trigger valves using two liquid fronts merging, and time a liquid using parallel microfluidic paths converging to a trigger valve. All together, these concepts should add functionality to passive microfluidic systems without departing from their initial simplicity of use. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
In this paper, we describe a method for encapsulation of biomaterials in hydrogel beads using a microfluidic droplet-merging channel. We devised a double T-junction in a microfluidic channel for alternate injection of aqueous fluids inside a droplet unit carried within immiscible oil. With this device, hydrogel beads with diameter <100 μm are produced, and various solutions containing cells, proteins and reagents for gelation could merge with the gel droplets with high efficiency in the broad range of flow rates. Mixing of reagents and reactions inside the hydrogel beads are continuously observed in a microchannel through a microscope. By enabling serial injection of each liquid with the dispersed gel droplets after they are produced from the oil-focusing channel, the device simplifies the sample preparation process, and gel-bead fabrication can be coupled with further assay continuously in a single channel. Instantaneous reactions of enzyme inside hydrogel and in-situ formation of cell-containing beads with high viability are demonstrated in this report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号