首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the DC and RF performance of InAlN/GaN high-electron mobility transistors with AlGaN back barrier grown on SiC substrates. These presented results confirm the high performance that is reachable by InAlN-based technology. The InAlN/GaN HEMT sample showed a high 2DEG mobility of 1550 cm2/(V·s) at a 2DEG density of 1.7×1013 cm-2. DC and RF measurements were performed on the unpassivated device with 0.2 μm "T" gate. The maximum drain current density at VGS=2 V is close to 1.05 A/mm in a reproducible way. The reduction in gate leakage current helps to increase the frequency performance of AlGaN back barrier devices. The power gain cut-off frequency of a transistor with an AlGaN back barrier is 105 GHz, which is much higher than that of the device without an AlGaN back barrier at the same gate length. These results indicate InAlN/GaN HEMT is a promising candidate for millimeter-wave application.  相似文献   

2.
We present the detailed dc and radio-frequency characteristics of an Al0.3Ga0.7N/GaN/In0.1Ga0.9 N/GaN double-heterojunction HEMT (DH-HEMT) structure. This structure incorporates a thin (3 nm) In0.1Ga0.9N notch layer inserted at a location that is 6-nm away from the AlGaN/GaN heterointerface. The In0.1Ga0.9N layer provides a unique piezoelectric polarization field which results in a higher potential barrier at the backside of the two-dimensional electron gas channel, effectively improving the carrier confinement and then reducing the buffer leakage. Both depletion-mode (D-mode) and enhancement-mode (E-mode) devices were fabricated on this new structure. Compared with the baseline AlGaN/GaN HEMTs, the DH-HEMT shows lower drain leakage current. The gate leakage current is also found to be reduced, owing to an improved surface morphology in InGaN-incorporated epitaxial structures. DC and small- and large-signal microwave characteristics, together with the linearity performances, have been investigated. The channel transit delay time analysis also revealed that there was a minor channel in the InGaN layer in which the electrons exhibited a mobility slightly lower than the GaN channel. The E-mode DH-HEMTs were also fabricated using our recently developed CF4-based plasma treatment technique. The large-signal operation of the E-mode GaN-based HEMTs was reported for the first time. At 2 GHz, a 1times100 mum E-mode device demonstrated a maximum output power of 3.12 W/mm and a power-added efficiency of 49% with single-polarity biases (a gate bias of +0.5 V and a drain bias of 35 V). An output third-order interception point of 34.7 dBm was obtained in the E-mode HEMTs  相似文献   

3.
A normally-off InAlN/GaN MIS-HEMT with HfZrO2 gate insulator was realized and investigated. By using N2O plasma treatment beneath the gate region, 13 nm InAlN Schottky layer was oxidized to AlONx + 4 nm InAlN Schottky layer. The strong polarization induced carriers in traditional InAlN/GaN 2 DEG quantum well was reduced for enhancement-mode operation. High-k thin film HfZrO2 was used for gate insulator of E-mode device to further suppress gate leakage current and enhance device gate operation range. The maximum drain current of E-mode InAlN/GaN MIS-HEMT was 498 mA/mm and this value was higher than previous published InAlN/GaN E-mode devices. The measurement results of low-frequency noise also concluded that the low frequency noise is attributed to the mobility fluctuation of the channel and N2O plasma treatment did not increase fluctuation center of gate electrode.  相似文献   

4.
通过利用MOCVD生长的高质量蓝宝石衬底InAlN/AlN/GaN异质结材料,获得了高的二维电子气面密度,其值为1.65×10<'13>cm<'-2>.通过该结构制备了0.15 μm栅长InAlN/AIN/GaN HEMT器件,获得了相关的电学特性:最大电流密度为1.3A/mm,峰值跨导为260mS/ram,电流增益截...  相似文献   

5.
We have developed a novel enhancement-mode double-doped AlGaAs/InGaAs/AlGaAs heterojunction FET (HJFET) with a 5 nm thick Al0.5Ga0.5As barrier layer inserted between an In 0.2Ga0.8As channel layer and an upper Al0.2 Ga0.8As electron supply layer. The Al0.5Ga 0.5As barrier layer reduces gate current under high forward gate bias voltage, resulting in a high forward gate turn-on voltage (V F) of 0.87 V, which is 170 mV higher than that of an HJFET without the barrier layer. Suppression of gate current assisted by a parallel conduction path in the upper electron supply layer was found to be also important for achieving the high VF. The developed device exhibited a high maximum drain current of 300 mA/mm with a threshold voltage of 0.17 V. A 950 MHz PDC power performance was evaluated under single 3.5 V operation. An HJFET with a 0.5 μm long gate exhibited 0.92 W output power and 63.6% power-added efficiency with 0.08 mA gate current (Ig) at -48 dBc adjacent channel leakage power at 50 kHz off-center frequency. This Ig is one-thirteenth to that of the HJFET without the barrier layer. These results indicate that the developed enhancement-mode HJFET is suitable for single low voltage operation power applications  相似文献   

6.
We have developed a novel AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using a stack gate HfO2/Al2O3 structure grown by atomic layer deposition. The stack gate consists of a thin HfO2 (30-A) gate dielectric and a thin Al2O3 (20- A) interfacial passivation layer (IPL). For the 50-A stack gate, no measurable C-V hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a Al2O3 IPL on an AlGaN substrate. Good surface passivation effects of the Al2O3 IPL have also been confirmed by pulsed gate measurements. Devices with 1- mum gate lengths exhibit a cutoff frequency (fT) of 12 GHz and a maximum frequency of oscillation (f MAX) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.  相似文献   

7.
InAlN/GaN high-electron-mobility transistors (HEMTs) on SiC substrate were fabricated and characterized. Several techniques, consisting of high electron density, 70 nm T-shaped gate, low ohmic contacts and a short drain-source distance, are integrated to gain high device performance. The fabricated InAlN/GaN HEMTs exhibit a maximum drain saturation current density of 1.65 A/mm at Vgs = 1 V and a maximum peak transconductance of 382 mS/mm. In addition, a unity current gain cut-off frequency (fT) of 162 GHz and a maximum oscillation frequency (fmax) of 176 GHz are achieved on the devices with the 70 nm gate length.  相似文献   

8.
The Al2O3 as a gate oxide and passivation was used to study the transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors (MOSHFETs). Performance of the devices with Al2O3 of different thickness between 4 and 14 nm prepared by metal–organic chemical vapor deposition (MOCVD) and with 4 nm thick Al2O3 prepared by Al sputtering and oxidation was investigated. All MOS-devices yielded higher transconductance than their HFET counterparts, i.e. the transconductance/capacitance expected proportionality assuming the same carrier velocity was not fulfilled. A different electric field near/below the gate contact due to a reduction of traps is responsible for the carrier velocity enhancement in the channel of the MOSHFET. The trap reduction depends on the oxide used, as follows from the capacitance vs frequency dispersion for devices investigated. It is qualitatively in a good agreement with the different velocity enhancement evaluated, and devices with thinner oxide show higher traps reduction as well as higher transconductance enhancement. It is also shown that obtained conclusions can be applied well on performance of SiO2/AlGaN/GaN MOSHFETs.  相似文献   

9.
Electrical characteristics of an n-channel Al0.3Ga0.7As/GaAs/In0.13Ga0.87 As pseudomorphic HEMT (PHEMT) with Lg=1 μm on GaAs are characterized under optical input (Popt). Gate leakage and drain current have been analyzed as a function of VGS, V DS, and Popt. We observed monotonically increasing gate leakage current due to the energy barrier lowering by the optically induced photovoltage, which means that gate input characteristics are significantly limited by the photovoltaic effect. However, we obtained a strong nonlinear photoresponsivity of the drain current, which is limited by the photoconductive effect. We also proposed a device model with an optically induced parasitic Al0.3Ga0.7As MESFET parallel to the In0.13Ga0.87As channel PHEMT for the physical mechanism in the drain current saturation under high optical input power  相似文献   

10.
The characteristics of a novel nitride based field-effect transistor combining SiO/sub 2/ gate isolation and an AlGaN/InGaN/GaN double heterostructure design (MOSDHFET) are reported. The double heterostructure design with InGaN channel layer significantly improves confinement of the two-dimensional (2-D) electron gas and compensates strain modulation in AlGaN barrier resulting from the gate voltage modulations. These decrease the total trapped charge and hence the current collapse. The combination of the SiO/sub 2/ gate isolation and improved carrier confinement/strain management results in current collapse free MOSDHFET devices with gate leakage currents about four orders of magnitude lower than those of conventional Schottky gate HFETs.  相似文献   

11.
We demonstrate the first GaN bipolar transistor. An AlGaN/GaN HBT structure was grown by MOCVD on c-plane sapphire substrate. The emitter was grown with an Al0.1Ga0.9N barrier to increase the emitter injection efficiency. Cl2 RIE was used to pattern the emitter mesa, and selectively regrown base contact pads were implemented to reduce a contact barrier associated with RIE etch damage to the base surface. The current gain of the devices was measured to be as high as three with a base width of 200 nm. DC transistor characteristics were measured to 30 V VCE in the common emitter configuration, with an offset voltage of 5 V. A gummel plot and base contact characteristics are also presented  相似文献   

12.
We report on a SiO/sub 2/-Ga/sub 2/O/sub 3/ gate insulator stack directly grown on n-type GaN by the photoelectrochemical oxidation method. The resultant MOS devices are fabricated using standard photolithography and liftoff techniques. The effect of annealing temperature on the SiO/sub 2/-Ga/sub 2/O/sub 3//n-type GaN MOS devices is investigated. The properties of high breakdown field, low gate leakage current, and low interface state density are investigated for the MOS devices.  相似文献   

13.
As the gate oxide thickness decreases below 2 nm, the gate leakage current increases dramatically due to direct tunneling current. This large gate leakage current will be an obstacle to reducing gate oxide thickness for the high speed operation of future devices. A MOS transistor with Ta2O5 gate dielectric is fabricated and characterized as a possible replacement for MOS transistors with ultra-thin gate silicon dioxide. Mobility, Id-Vd, Id-Vg, gate leakage current, and capacitance-voltage (C-V) characteristics of Ta2O5 transistors are evaluated and compared with SiO2 transistors. The gate leakage current is three to five orders smaller for Ta2O5 transistors than SiO2 transistors  相似文献   

14.
原子层沉积(ALD)方法可以制备出高质量薄膜,被认为是可应用于柔性有机电致发光器件(OLED)最有发展前景的薄膜封装技术之一。本文采用原子层沉积(ALD)技术,在低温(80℃)下,研究了Al2O3及TiO2薄膜的生长规律,通过钙膜水汽透过率(WVTR)、薄膜接触角测试等手段,研究了不同堆叠结构的多层Al2O3/TiO2复合封装薄膜的水汽阻隔特性,其中5 nm/5 nm×8 dyads(重复堆叠次数)的Al2O3/TiO2叠层结构薄膜的WVTR达到2.1×10-5 g/m2/day。采用优化后的Al2O3/TiO2叠层结构薄膜对OLED器件进行封装,实验发现封装后的OLED器件在高温高湿条件下展现了较好的寿命特性。  相似文献   

15.
In this paper, lattice-matched Pt/Au-In0.17Al0.83N/GaN high electron mobility transistors (HEMTs) were fabricated, and the degradation characteristics of the gate leakage current were investigated by drain-to-source voltage (VDS) step-stress measurements under the ON, semi-ON, and OFF stress conditions and at different temperatures, respectively. It is found that, (1) there exists a critical value of VDS, beyond which the gate leakage current begins to increase significantly; and (2) the degradation of gate leakage current has a positive temperature coefficient, indicating that high temperature can accelerate the degradation. A hot electron model is used to explain the experimental results, emphasizing that the hot electrons from the channel can induce additional negatively charged defects at the InAlN/GaN interface, which can increase the local electrical field and introduce a thinner surface barrier and finally enhance the vertical leakage current component, leading to the current degradation.  相似文献   

16.
研制了高电流增益截止频率(fT)的InAlN/GaN高电子迁移率晶体管(HEMT).采用金属有机化学气相沉积(MOCVD)再生长n+GaN非合金欧姆接触工艺将器件源漏间距缩小至600 nm,降低了源、漏寄生电阻,有利于改善器件的寄生效应;使用低压化学气相沉积(LPCVD)生长SiN作为栅下介质,降低了InAlN/GaN HEMT栅漏电;利用电子束光刻实现了栅长为50 nm的T型栅.此外,还讨论了寄生效应对器件fT的影响.测试结果表明,器件的栅漏电为3.8 μA/mm,饱和电流密度为2.5 A/mm,fT达到236 GHz.延时分析表明,器件的寄生延时为0.13 ps,在总延时中所占的比例为19%,优于合金欧姆接触工艺的结果.  相似文献   

17.
We present GaN-based high electron mobility transistors (HEMTs) with a 2-nm-thin InAlN/AlN barrier capped with highly doped n++ GaN. Selective etching of the cap layer results in a well-controllable ultrathin barrier enhancement-mode device with a threshold voltage of +0.7 V. The n++ GaN layer provides a 290-Omega/square sheet resistance in the HEMT access region and eliminates current dispersion measured by pulsed IV without requiring additional surface passivation. Devices with a gate length of 0.5-mum exhibit maximum drain current of 800 mA/mm, maximum transconductance of 400 mS/mm, and current cutoff frequency fT of 33.7 GHz. In addition, we demonstrate depletion-mode devices on the same wafer, opening up perspectives for reproducible high-performance InAlN-based digital integrated circuits.  相似文献   

18.
Abstract: We propose a new structure of InxAll-xN/GaN high electron mobility transistor (HEMT) with gate length of 20 nm. The threshold voltage of this HEMT is achieved as -0.472 V. In this device the InA1N barrier layer is intentionally n-doped to boost the ION/IOFF ratio. The InAlN layer acts as donor barrier layer for this HEMT which exhibits an ION = 10-4.3 A and a very low IOFF = 10-14.4 A resulting in an ION/IoFF ratio of 1010.1. We compared our obtained results with the conventional InAlN/GaN HEMT device having undoped barrier and found that the proposed device has almost l0s times better ION/IOFF ratio. Further, the mobility analysis in GaN channel of this proposed HEMT structure along with DC analysis, C-V and conductance characteristics by using small-signal analysis are also presented in this paper. Moreover, the shifts in threshold voltage by DIBL effect and gate leakage current in the proposed HEMT are also discussed. InAlN was chosen as the most preferred barrier layer as a replacement of AlGaN for its excellent thermal conductivity and very good scalability.  相似文献   

19.
Al0.3Ga0.7N/GaN high electron mobility transistor (HEMT) structures have been grown on resistive Si(111) substrate by molecular beam epitaxy (MBE) using ammonia (NH3). The use of an AlN/GaN intermediate layer allows a resistive buffer layer to be obtained. High sheet carrier density and high electron mobility arc obtained in the channel. A device with 0.5 μm gate length has been realised exhibiting a maximum extrinsic transconductance of 160 mS/mm and drain-source current exceeding 600 mA/mm. Small-signal measurements show ft of 17 GHz and fmax of 40 GHz  相似文献   

20.
This letter demonstrates a high-voltage, high-current, and low-leakage-current GaN/AlGaN power HEMT with HfO2 as the gate dielectric and passivation layer. The device is measured up to 600 V, and the maximum on-state drain current is higher than 5.5 A. Performance of small devices with HfO2 and Si3N4 dielectrics is compared. The electric strength of gate dielectrics is measured for both HfO2 and Si3N4. Devices with HfO2 show better uniformity and lower leakage current than Si3N4 passivated devices. The 5.5-A HfO2 devices demonstrate very low gate (41 nA/mm) and drain (430 nA/mm) leakage-current density and low on-resistance (6.2 Omegamiddotmm or 2.5 mOmegamiddotcm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号