首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
The aim of this study was to determine if there were differences between the types of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria associated with particulate material and planktonic samples obtained from the northwestern Mediterranean Sea. A nested PCR procedure performed with ammonia oxidizer-selective primers was used to amplify 16S rRNA genes from extracted DNA. The results of partial and full-length sequence analyses of 16S rRNA genes suggested that different groups of ammonia-oxidizing bacteria were associated with the two sample types. The particle-associated sequences were predominantly related to Nitrosomonas eutropha, while the sequences obtained from the planktonic samples were related to a novel marine Nitrosospira group (cluster 1) for which there is no cultured representative yet. A number of oligonucleotide probes specific for different groups of ammonia oxidizers were used to estimate the relative abundance of sequence types in samples of clone libraries. The planktonic libraries contained lower proportions of ammonia oxidizer clones (0 to 26%) than the particulate material libraries (9 to 83%). Samples of the planktonic and particle-associated libraries showed that there were depth-related differences in the ammonia oxidizer populations, with the highest number of positive clones in the particle-associated sample occurring at a depth of 700 m. The greatest difference between planktonic and particle-associated populations occurred at a depth of 400 m, where only 4% of the clones in the planktonic library were identified as Nitrosomonas clones, while 96% of these clones were identified as clones that were related to the marine Nitrosospira species. Conversely, all ammonia oxidizer-positive clones obtained from the particle-associated library were members of the Nitrosomonas group. This is the first indication that Nitrosomonas species and Nitrosospira species may occupy at least two distinct environmental niches in marine environments. The occurrence of these groups in different niches may result from differences in physiological properties and, coupled with the different environmental conditions associated with these niches, may lead to significant differences in the nature and rates of nitrogen cycling in these environments.  相似文献   

2.
A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial beta-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution.  相似文献   

3.
Acanthamoebae are ubiquitous soil and water bactivores which may serve as amplification vehicles for a variety of pathogenic facultative bacteria and as hosts to other, presently uncultured bacterial endosymbionts. The spectrum of uncultured endosymbionts includes gram-negative rods and gram-variable cocci, the latter recently shown to be members of the Chlamydiales. We report here the isolation from corneal scrapings of two Acanthamoeba strains that harbor gram-negative rod endosymbionts that could not be cultured by standard techniques. These bacteria were phylogenetically characterized following amplification and sequencing of the near-full-length 16S rRNA gene. We used two fluorescently labelled oligonucleotide probes targeting signature regions within the retrieved sequences to detect these organisms in situ. Phylogenetic analyses demonstrated that they displayed 99.6% sequence similarity and formed an independent and well-separated lineage within the Rickettsiales branch of the alpha subdivision of the Proteobacteria. Nearest relatives included members of the genus Rickettsia, with sequence similarities of approximately 85 to 86%, suggesting that these symbionts are representatives of a new genus and, perhaps, family. Distance matrix, parsimony, and maximum-likelihood tree-generating methods all consistently supported deep branching of the 16S rDNA sequences within the Rickettsiales. The oligonucleotide probes displayed at least three mismatches to all other available 16S rDNA sequences, and they both readily permitted the unambiguous detection of rod-shaped bacteria within intact acanthamoebae by confocal laser-scanning microscopy. Considering the long-standing relationship of most Rickettsiales with arthropods, the finding of a related lineage of endosymbionts in protozoan hosts was unexpected and may have implications for the preadaptation and/or recruitment of rickettsia-like bacteria to metazoan hosts.  相似文献   

4.
We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples.  相似文献   

5.
6.
In this report, we present details of two rapid molecular detection techniques based on 16S and 23S rRNA sequence data to identify and differentiate Yersinia species from clinical and environmental sources. Near-full-length 16S rRNA gene (rDNA) sequences for three different Yersinia species and partial 23S rDNA sequences for three Y. pestis and three Y. pseudotuberculosis strains were determined. While 16S rDNA sequences of Y. pestis and Y. pseudotuberculosis were found to be identical, one base difference was identified within a highly variable region of 23S rDNA. The rDNA sequences were used to develop primers and fluorescently tagged oligonucleotide probes suitable for differential detection of Yersinia species by PCR and in situ hybridization, respectively. As few as 10(2) Yersinia cells per ml could be detected by PCR with a seminested approach. Amplification with a subgenus-specific primer pair followed by a second PCR allowed differentiation of Y. enterocolitica biogroup 1B from biogroups 2 to 5 or from other pathogenic Yersinia species. Moreover, a set of oligonucleotide probes suitable for rapid (3-h) in situ detection and differentiation of the three pathogenic Yersinia species (in particular Y. pestis and Y. pseudotuberculosis) was developed. The applicability of this technique was demonstrated by detection of Y. pestis and Y. pseudotuberculosis in spiked throat and stool samples, respectively. These probes were also capable of identifying Y. enterocolitica within cryosections of experimentally infected mouse tissue by the use of confocal laser scanning microscopy.  相似文献   

7.
Over the past few years, there has been an increasing interest in making oligonucleotides specific for ammonia-oxidizing bacteria (AOB), in order to detect and monitor these slow growing bacteria in environmental samples, in enrichment cultures and in wastewater treatment plants. Based on 16S rDNA sequences, a broad selection of oligonucleotides have been designed, either encompassing all known AOB in the beta-subgroup of the Proteobacteria (beta AOB), or subclasses within beta AOB. Thirty different oligonucleotides have so far been published, with varying specificity. The first AOB-specific oligonucleotides published were obtained as a result of an alignment of only eleven 16S rDNA sequences from AOB. Including the present study, there are now forty nearly full length 16S rDNA sequences available from these bacteria, in addition to a number of partial sequences, so that an improved evaluation of the published oligonucleotides can be done. Two new 16S rRNA gene sequences from Nitrosospira are presented here, in a phylogenetic analysis containing every 16S rRNA gene sequences (> 1 kb) available from AOB. On the basis of an alignment of all these sequences, combined with searches in the nucleotide sequence databases, an evaluation of the thirty published oligonucleotides is presented. The analysis expose the strength and weakness of each oligonucleotide and discuss the use of oligonucleotides specific for 16S rRNA genes in future studies of AOB. The present work also identifies one new, broad range primer, specific for the AOB in the beta-subgroup of the Proteobacteria.  相似文献   

8.
In a previous study (S. G. Acinas, F. Rodríguez-Valera, and C. Pedrós-Alió, FEMS Microbiol. Ecol. 24:27-40, 1997), community fingerprinting by 16S rDNA restriction analysis applied to Mediterranean offshore waters showed that the free-living pelagic bacterial community was very different from the bacterial cells aggregated or attached to particles of more than about 8 micrometer. Here we have studied both assemblages at three depths (5, 50, and 400 m) by cloning and sequencing the 16S rDNA obtained from the same samples, and we have also studied the samples by scanning electron microscopy to detect morphology patterns. As expected, the sequences retrieved from the assemblages were very different. The subsample of attached bacteria contained very little diversity, with close relatives of a well-known species of marine bacteria, Alteromonas macleodii, representing the vast majority of the clones at every depth. On the other hand, the free-living assemblage was highly diverse and varied with depth. At 400 m, close relatives of cultivated gamma Proteobacteria predominated, but as shown by other authors, near the surface most clones were related to phylotypes described only by sequence, in which the alpha Proteobacteria of the SAR11 cluster predominated. The new technique of rDNA internal spacer analysis has been utilized, confirming these results. Clones representative of the A. macleodii cluster have been completely sequenced, producing a picture that fits well with the idea that they could represent a genus with at least two species and with a characteristic depth distribution.  相似文献   

9.
The diversity of the predominant bacteria in the human gastrointestinal tract was studied by using 16S rRNA-based approaches. PCR amplicons of the V6 to V8 regions of fecal 16S rRNA and ribosomal DNA (rDNA) were analyzed by temperature gradient gel electrophoresis (TGGE). TGGE of fecal 16S rDNA amplicons from 16 individuals showed different profiles, with some bands in common. Fecal samples from two individuals were monitored over time and showed remarkably stable profiles over a period of at least 6 months. TGGE profiles derived from 16S rRNA and rDNA amplicons showed similar banding patterns. However, the intensities of bands with similar mobilities differed in some cases, indicating a different contribution to the total active fraction of the prominent fecal bacteria. Most 16S rRNA amplicons in the TGGE pattern of one subject were identified by cloning and sequence analysis. Forty-five of the 78 clones matched 15 bands, and 33 clones did not match any visible band in the TGGE pattern. Nested PCR of amplified 16S rDNA indicated preferential amplification of a sequence corresponding to 12 of the 33 nonmatching clones with similar mobilities in TGGE. The sequences matching 15 bands in the TGGE pattern showed 91.5 to 98.7% homology to sequences derived from different Clostridium clusters. Most of these were related to strains derived from the human intestine. The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.  相似文献   

10.
11.
The 16S rRNA gene sequences were determined for type strains of 21 Bifidobacterium species. A phylogenetic tree was constructed using the determined sequences and sequences from DNA databases, which contain the sequences of 11 type strains of Bifidobacterium species and 11 strains of related genera. All species of the genus Bifidobacterium and Gardnerella vaginalis ATCC 14018 belonged to a cluster phylogenetically distinct from the other genera. The cluster was divided into two subclusters: subcluster 1 composed of most species of Bifidobacterium and G. vaginalis, and subcluster 2 consisting of two species, B. denticolens and B. inopinatum; both of which were isolated from human dental caries. In the genus Bifidobacterium, four groups of species are known to be moderately to highly related by DNA-DNA hybridization. The four groups of species exhibited more than 99% similarity among their 16S rDNA sequences within each group. These results indicated that species with around 99% or more similarity in their 16S rDNA sequences should be confirmed for species identities.  相似文献   

12.
The identification of pathogens in patients with bacterial keratitis remains problematic because standard diagnostic tests are negative for 40 to 60% of patients. A cross-sectional study was undertaken to determine if PCR and sequence analysis of 16S ribosomal DNA (rDNA) could be used to detect bacterial pathogens in patients with keratitis. Corneal specimens were collected for culture and rDNA typing. Variable segments of each rDNA specimen were amplified by PCR, sequenced, and aligned with the sequences in GenBank. Eleven patients had microbiologically documented bacterial keratitis, while 17 patients had keratitis due to other causes. Nine (82%) of 11 bacterial keratitis patients were PCR positive; each sequencing result matched the culture results. Seventeen (100%) patients with nonbacterial keratitis were PCR negative. Our data suggest that 16S rDNA typing holds promise as a rapid alternative to culture for identifying pathogens in patients with bacterial keratitis.  相似文献   

13.
PCR amplifications of 16S/23S rDNA spacer regions were carried out from conserved 16S and 23S sequences for genomic DNA samples from strains representing 16 bacterial species (12 genera). Multiple products were produced containing conserved homologous sequences at the 3' and 5' ends, separated by highly variable internal spacer sequences. These products cross-hybridized forming heteroduplex DNA structures containing double-stranded ends surrounding an internal single-stranded loop. Single-stranded DNA was also produced in the amplification of rDNA spacer sequences. Fragments comprising the nonhomoduplex DNA components were identified by their susceptibility to removal by digestion with a single-stranded endonuclease. The relative formation of heteroduplex and single-stranded DNA was reduced by reaction conditions favoring primer/template annealing, for example, higher ionic strength, higher primer concentration, and lower annealing temperature, as well as by decreasing the number of amplification cycles. Heteroduplex and single-stranded DNA structures were also generated by denaturing and reannealing spacer amplification products in the absence of polymerase activity. Whereas heteroduplex and single-stranded DNA structures provide additional information that is helpful in distinguishing between species of bacteria that produce similar homoduplex products, the mobility of heteroduplex and single-stranded DNA structures DNA structures is extremely sensitive to electrophoretic conditions.  相似文献   

14.
So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria.  相似文献   

15.
A gene lineage (SAR406) related to Chlorobium and Fibrobacter species was found in 16S rRNA gene clone libraries prepared from samples from two oceans. The clone libraries were constructed from total picoplankton genomic DNA to assess bacterial diversity in the lower surface layer. The samples were collected by filtration from a depth of 80 m at a site in the western Sargasso Sea and from a depth of 120 m at a site in the Pacific Ocean, approximately 70 km from the Oregon coast. The PCR and primers which amplified nearly full-length 16S rRNA genes were used to prepare the clone libraries. Among the diverse gene clones in these libraries were two related clones (SAR406 and OCS307) which could not be assigned to any of the major bacterial phyla. Phylogenetic analyses demonstrated that these genes were distant relatives of the genus Fibrobacter and the green sulfur bacterial phylum, which includes the genus Chlorobium. The inclusion of SAR406 in phylogenetic trees inferred by several methods resulted in support from bootstrap replicates for the conclusion that Fibrobacter and Chlorobium species and SAR406 are a monophyletic group. An oligonucleotide probe that selectively hybridized to clone SAR406 was used to examine the distribution of this gene lineage in vertical profiles from the Atlantic and Pacific Oceans and in monthly time series at 0 and 200 m in the Atlantic Ocean. During stratified periods, the genes were most abundant slightly below the deep chlorophyll layer. Seasonal changes in the surface abundance of SAR406 rDNA were highly correlated with chlorophyll a levels (r = 0.75).  相似文献   

16.
The complete 16S-23S rDNA internal transcribed spacer (ITS) was sequenced in 35 reference strains of the Mycobacterium avium complex. Twelve distinct ITS sequences were obtained, each of which defined a "sequevar"; a sequevar consists of the strain or strains which have a particular sequence. ITS sequences were identified which corresponded to M. avium (16 strains, four ITS sequevars) and Mycobacterium intracellulare (12 strains, one ITS sequevars). The other seven M. avium complex strains had ITS sequences which varied greatly from those of M. avium and M. intracellulare and from each other. The 16S-23S rDNA ITS was much more variable than 16S rDNA, which is widely used for genus and species identification. Phylogenetic trees based on the ITS were compatible with those based on 16S rDNA but were more detailed and had longer branches. The results of ITS sequencing were consistent with the results of hybridization with M. avium and M. intracellulare probes (Gen-Probe) for 30 of 31 strains tested. Serologic testing correlated poorly with ITS sequencing. Strains with the same sequence were different serovars, and those of the same serovar had different sequences. Sequencing of the 16S-23S rDNA ITS should be useful for species and strain differentiation for a wide variety of bacteria and should be applicable to studies of epidemiology, diagnosis, virulence, and taxonomy.  相似文献   

17.
Actinobacillus actinomycetemcomitans has been strongly implicated in the etiology of localized juvenile periodontitis. Techniques used in the identification of this periodontal pathogen include cultural, biochemical, immunological and DNA hybridization analysis. In this study, we report the use of polymerase chain reaction (PCR) to amplify unique sequences of A. actinomycetemcomitans. Specific oligonucleotide primers LKT2 and LKT3 were designed to hybridize to the A. actinomycetemcomitans lktA gene, which encodes leukotoxin, a putative A. actinomycetemcomitans virulence factor. The LKT2 and LKT3 primers amplified lktA-specific sequences from all 12 A. actinomycetemcomitans strains tested. In another set of experiments, 13 other bacterial species, most of which are normal residents of the oral cavity, were tested with these primers. These PCR amplifications also contained 2 additional primers, RRN4 and RRN5, which served as positive controls; RRN4 and RRN5 were designed to amplify specific sequences of eubacterial 16S ribosomal DNA (rDNA). PCR amplifications of all bacterial species tested, including A. actinomycetemcomitans, yielded 16S rDNA-specific DNA fragments. Furthermore, each bacterial species tested, with the exception of A. actinomycetemcomitans, failed to amplify lktA sequences. The LKT and RRN primers were used in further PCR experiments to detect A. actinomycetemcomitans directly from gingival fluid samples. The results clearly demonstrate the simplicity, rapidity, specificity and accuracy of the LKT primers in the identification of A. actinomycetemcomitans.  相似文献   

18.
Naturally occurring plasmids isolated from heterotrophic bacterial isolates originating from coastal California marine sediments were characterized by analyzing their incompatibility and replication properties. Previously, we reported on the lack of DNA homology between plasmids from the culturable bacterial population of marine sediments and the replicon probes specific for a number of well-characterized incompatibility and replication groups (P. A. Sobecky, T. J. Mincer, M. C. Chang, and D. R. Helinski, Appl. Environ. Microbiol. 63:888-895, 1997). In the present study we isolated 1.8- to 2.3-kb fragments that contain functional replication origins from one relatively large (30-kb) and three small (<10-kb) naturally occurring plasmids present in different marine isolates. 16S rRNA sequence analyses indicated that the four plasmid-bearing marine isolates belonged to the alpha and gamma subclasses of the class Proteobacteria. Three of the marine sediment isolates are related to the gamma-3 subclass organisms Vibrio splendidus and Vibrio fischeri, while the fourth isolate may be related to Roseobacter litoralis. Sequence analysis of the plasmid replication regions revealed the presence of features common to replication origins of well-characterized plasmids from clinical bacterial isolates, suggesting that there may be similar mechanisms for plasmid replication initiation in the indigenous plasmids of gram-negative marine sediment bacteria. In addition to replication in Escherichia coli DH5alpha and C2110, the host ranges of the plasmid replicons, designated repSD41, repSD121, repSD164, and repSD172, extended to marine species belonging to the genera Achromobacter, Pseudomonas, Serratia, and Vibrio. While sequence analysis of repSD41 and repSD121 revealed considerable stretches of homology between the two fragments, these regions do not display incompatibility properties against each other. The replication origin repSD41 was detected in 5% of the culturable plasmid-bearing marine sediment bacterial isolates, whereas the replication origins repSD164 and repSD172 were not detected in any plasmid-bearing bacteria other than the parental isolates. Microbial community DNA extracted from samples collected in November 1995 and June 1997 and amplified by PCR yielded positive signals when they were hybridized with probes specific for repSD41 and repSD172 replication sequences. In contrast, replication sequences specific for repSD164 were not detected in the DNA extracted from marine sediment microbial communities.  相似文献   

19.
A sample of deep-sea sediment was obtained from the Japan Trench at a depth of 6292 m using a pressure-retaining sediment sampler. Microorganisms in the sediment sample were cultivated in marine broth 2216 at ambient pressure (65 MPa) without decompression, and at atmospheric pressure (0.1 MPa) as a control experiment. 16S ribosomal RNA genes (rDNA) were amplified by PCR from DNA extracted from the original sediment sample and the mixed cultures, and the nucleotide sequences were determined. The results of phylogenetic analysis based on 16S rDNA sequences indicated that microbial diversity in the original sediment samples showed a wide distribution of types in the domain Bacteria. Furthermore, in the mixed cultures incubated at 65 MPa without decompression, bacterial strains belonging to the Shewanella barophiles branch and the genus Moritella existed together at the beginning of cultivation, and Moritella strains became dominant towards the end of the cultivation period. Finally, in the mixed cultures incubated at atmospheric pressure, strains belonging to the genus Pseudomonas were dominant at all times. Analysis of fatty acids extracted from the cultures supported the phylogenetic results.  相似文献   

20.
An enrichment of the neuston bacterium Nevskia ramosa was investigated by the cultivation-independent rRNA approach. N. ramosa was first described by Famintzin in 1892 as a rod-shaped, slightly bent bacterium forming typical flat rosettes on the surface of shallow freshwater habitats by unilateral slime formation. PCR in combination with cloning and sequencing was used for retrieving 21 partial and 5 nearly full-length 16S rRNA sequences forming three tight clusters. In situ hybridization with rRNA-targeted oligonucleotide probes allowed us to assign the three sequence clusters to three distinct bacterial populations abundant in the enrichment. The two probes that unambiguously identified the N. ramosa morphotype were derived from a 16S rRNA sequence that had similarities of 87.9 to 88.9% to the rRNA sequences of the most closely related group in the database, Xanthomonas sp. and relatives. N. ramosa currently is the only representative of an independent, deep branch of the gamma subclass of the class Proteobacteria. The two other populations abundant in the enrichment were affiliated with the alpha subclass of the class Proteobacteria. They were most closely related to Blastobacter sp. (97.2% similarity) and Mycoplana bullata (97.6% similarity) and might represent new species in the respective genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号