共查询到20条相似文献,搜索用时 15 毫秒
1.
模糊概念图知识表示及其推理机制研究* 总被引:2,自引:0,他引:2
通过对现有模糊概念图的研究,针对概念的所指域与模糊信息间的冗余问题和用模糊度表示模糊概念问题,提出一种改进的模糊概念图知识表示方法。在改进的模糊概念图中,用模糊集合表示概念图中的模糊概念和模糊关系,并将模糊概念的所指域同模糊集合合并,减少信息冗余。根据改进的模糊概念图,重点研究了模糊概念图的匹配推理机制,设计了基于语义约束的匹配推理算法,并定量分析了算法的时间复杂度和空间复杂度。经过在《计算机文化基础》课程中实验测试,算法反映了考生主观题的答卷情况,同人工阅卷结果基本一致。 相似文献
2.
This study was motivated by some difficulties encountered by the authors when trying to express temporal knowledge using Sowa's conceptual graph (CG) approach. An overview of Sowa's approach is given and the difficulties encountered when trying to model temporal knowledge are outlined: the disparity of notations allowed by CG theory for expressing temporal information; the ambiguity and incompleteness of tense sspecification; the difficulty of harmonizing tenses and intergraph temporal relations. Various approaches suggested for representing time both in artificial intelligence and linguistics are presented, and an extension to Sowa's approach is proposed in which temporal and nontemporal knowledge are differentiated. In this model points in time are represented as well as time intervals. A semantic interpretation of verbs is provided based on an extension of Reichenbach's model of temporal markers. The authors show how their approach enables the representation of tenses as well as the aspectual properties of natural language sentences. 相似文献
3.
Joerg Evermann 《Information Systems Journal》2005,15(2):147-178
Abstract. Knowledge engineering, knowledge management and conceptual modelling are concerned with representing knowledge of business and organizational domains. These research areas use ontologies for knowledge representation. Ontologies are understood either in the philosophical sense as firm metaphysical commitments or in the looser sense of dictionaries or taxonomies.
This paper critically examines the understanding and use of ontologies and knowledge representation languages in information systems (IS) research and application. As ontologies are intended to be conceptualizations of a perceived reality, they should reflect the empirically observed reality. This motivates proposing psychology of language as a reference discipline for knowledge engineering and knowledge management. Natural language is argued to reflect the cognitive concepts we use to think about and perceive the world around us. These cognitive concepts are the relevant terms with which to structure and represent knowledge about the world.
Psychology of language can provide empirical justification for a particular set of concepts to represent knowledge. This paper draws on psycho-linguistic research to develop a proposal for a system of cognitive structures. This is argued to provide the relevant concepts on which to found knowledge representation schemata for knowledge engineering, knowledge management and conceptual modelling. 相似文献
This paper critically examines the understanding and use of ontologies and knowledge representation languages in information systems (IS) research and application. As ontologies are intended to be conceptualizations of a perceived reality, they should reflect the empirically observed reality. This motivates proposing psychology of language as a reference discipline for knowledge engineering and knowledge management. Natural language is argued to reflect the cognitive concepts we use to think about and perceive the world around us. These cognitive concepts are the relevant terms with which to structure and represent knowledge about the world.
Psychology of language can provide empirical justification for a particular set of concepts to represent knowledge. This paper draws on psycho-linguistic research to develop a proposal for a system of cognitive structures. This is argued to provide the relevant concepts on which to found knowledge representation schemata for knowledge engineering, knowledge management and conceptual modelling. 相似文献
4.
This article addresses the methodological problem of the non-linear representation of philosophical systems in a computerized knowledge base. It is a problem of knowledge representation as defined in the field of artificial intelligence. Instead of a purely theoretical discussion of the issue, we present selected results of a practical experiment which has in itself some theoretical significance. We show how one can represent different philosophies using CODE, a knowledge engineering system developed by artificial intelligence researchers. The hypothesis is that such a computer based representation of philosophical systems can give insight into their conceptual structure. We argue that computer aided text analysis can apply knowledge representation tools and techniques developed in artificial intelligence and we estimate how philosophers as well as knowledge engineers could gain from this cross-fertilization. This paper should be considered as an experiment report on the use of knowledge representation techniques in computer aided text analysis. It is part of a much broader project on the representation of conceptual structures in an expert system. However, we intentionally avoided technical issues related to either Computer Science or History of Philosophy to focus on the benefit to enhance traditional humanistic studies with tools and methods developed in AI on the one hand and the need to develop more appropriate tools on the other.
Gilbert Boss is professor of Philosophy at Université Laval, Québec. He is the author of several books, including Les machines à penser. L'homme et l'ordinateur,Zurich: Grand Midi, 1987, and John Stuart Mill. Induction et utilité,Paris: PUF, 1990. His main fields of research are modern philosophy, philosophy of culture, philosophical discourse and systems, artificial intelligence.
Maryvonne Longeart is professor of Computer Science at UQAH, Hull, Québec. Her research interests include object oriented design methodologies and knowledge representation. She received a PhD in Philosophy from the University of Ottawa in 1978 and a BSc in computer science in 1987. She contributed to the Encyclopédie philosophique universelle,PUF, 1992 and published several papers on the representation of complex conceptual systems.Douglas Skuce is professor of computer science at the University of Ottawa. He has worked in the area of knowledge engineering since his PhD (McGill, 1977). During 1978-present he has been developing the CODE system for various applications, including terminology and software development. Currently, his interests include designing ontologies for knowledge exchange and coupling large corpora to systems such as CODE. 相似文献
5.
Data-driven conceptual design is rapidly emerging as a powerful approach to generate novel and meaningful ideas by leveraging external knowledge especially in the early design phase. Currently, most existing studies focus on the identification and exploration of design knowledge by either using common-sense or building specific-domain ontology databases and semantic networks. However, the overwhelming majority of engineering knowledge is published as highly unstructured and heterogeneous texts, which presents two main challenges for modern conceptual design: (a) how to capture the highly contextual and complex knowledge relationships, (b) how to efficiently retrieve of meaningful and valuable implicit knowledge associations. To this end, in this work, we propose a new data-driven conceptual design approach to represent and retrieve cross-domain knowledge concepts for enhancing design ideation. Specifically, this methodology is divided into three parts. Firstly, engineering design knowledge from the massive body of scientific literature is efficiently learned as information-dense word embeddings, which can encode complex and diverse engineering knowledge concepts into a common distributed vector space. Secondly, we develop a novel semantic association metric to effectively quantify the strength of both explicit and implicit knowledge associations, which further guides the construction of a novel large-scale design knowledge semantic network (DKSN). The resulting DKSN can structure cross-domain engineering knowledge concepts into a weighted directed graph with interconnected nodes. Thirdly, to automatically explore both explicit and implicit knowledge associations of design queries, we further establish an intelligent retrieval framework by applying pathfinding algorithms on the DKSN. Next, the validation results on three benchmarks MTURK-771, TTR and MDEH demonstrate that our constructed DKSN can represent and associate engineering knowledge concepts better than existing state-of-the-art semantic networks. Eventually, two case studies show the effectiveness and practicality of our proposed approach in the real-world engineering conceptual design. 相似文献
6.
知识表示学习目的是将知识图谱中符号化表示的关系与实体嵌入到低维连续向量空间。知识表示模型在训练过程中需要大量负样本,但多数知识图谱只以三元组的形式存储正样本。传统知识表示学习方法中通常使用负采样方法,这种方法生成的负样本很容易被模型判别,随着训练的进行对性能提升的贡献也会越来越小。为了解决这个问题,提出了对抗式负样本生成器(ANG)模型。生成器采用编码-解码架构,编码器读入头或尾实体被替换的正样本作为上下文信息,然后解码器利用编码器提供的编码信息为三元组填充被替换的实体,从而构建负样本。训练过程采用已有的知识表示学习模型与生成器进行对抗训练以优化知识表示向量。在链接预测和三元组分类任务上评估了该方法,实验结果表明该方法对已有知识表示学习模型在FB15K237、WN18和WN18RR数据集上的链接预测平均排名与三元组分类准确度都有提升。 相似文献
7.
目的 视觉目标跟踪中,目标往往受到自身或场景中各种复杂干扰因素的影响,这对正确捕捉所感兴趣的目标信息带来极大的挑战。特别是,跟踪器所用的模板数据主要是在线学习获得,数据的可靠性直接影响到候选样本外观模型表示的精度。针对视觉目标跟踪中目标模板学习和候选样本外观模型表示等问题,采用一种较为有效的模板组织策略以及更为精确的模型表示技术,提出一种新颖的视觉目标跟踪算法。方法 跟踪框架中,将候选样本外观模型表示假设为由一组复合模板和最小重构误差组成的线性回归问题,首先利用经典的增量主成分分析法从在线高维数据中学习出一组低维子空间基向量(模板正样本),并根据前一时刻跟踪结果在线实时采样一些特殊的负样本加以扩充目标模板数据,再利用新组织的模板基向量和独立同分布的高斯—拉普拉斯混合噪声来线性拟合候选目标外观模型,最后估计出候选样本和真实目标之间的最大似然度,从而使跟踪器能够准确捕捉每一时刻的真实目标状态信息。结果 在一些公认测试视频序列上的实验结果表明,本文算法在目标模板学习和候选样本外观模型表示等方面比同类方法更能准确有效地反映出视频场景中目标状态的各种复杂变化,能够较好地解决各种不确定干扰因素下的模型退化和跟踪漂移问题,和一些优秀的同类算法相比,可以达到相同甚至更高的跟踪精度。结论 本文算法能够在线学习较为精准的目标模板并定期更新,使得跟踪器良好地适应内在或外在因素(姿态、光照、遮挡、尺度、背景扰乱及运动模糊等)所引起的视觉信息变化,始终保持其最佳的状态,使得候选样本外观模型的表示更加可靠准确,从而展现出更为鲁棒的性能。 相似文献
8.
现有概念模型开发普遍存在着应用领域知识获取难、不能满足多方面用户需求、可重用性低的问题.在分析上述问题的基础上,提出了分层次概念模型开发方法,即面向领域用户的非形式化概念模型开发和面向技术人员的形式化概念模型开发.重点研究了基于本体的概念模型描述方法,并采用UML-OCL方法对概念模型进行了形式化描述. 相似文献
9.
10.
11.
为了满足消费者的个性化需求,提高产品概念创新设计阶段的设计效率和水平,同时提升设计阶段的创新能力,构建了数据驱动的产品概念设计创新知识服务模型。该模型基于产品的评论数据和专利数据等,运用文本挖掘和聚类分析等技术,向产品的设计者提供相应的知识服务,进而对设计过程提供相应的辅助支撑。最后,用实例验证了该模型的有效性。 相似文献
12.
13.
14.
为了提升红外与可见光图像融合视觉效果,克服融合结果的伪影效应,提出一种基于内生长机制结合卷积稀疏表示的图像融合方法.首先,采用符合人类大脑推理的内生长机制对源图像进行分解,获取预测层和细节层;其次,对细节层采用卷积稀疏表示进行二次分解,获取二次细节层和基本层,并分别对其采用活动水平测度取大以及加权平均规则进行融合;再次,针对预测层定义ISR混合算子融合规则,并进行融合;最后,将融合后的预测层和细节层相加获取最终融合结果.实验中,采用3组具有代表性的红外与可见光图像进行算法测试,实验结果表明所提出的方法具有较好的主观视觉效果,并且客观评价指标更好,具有有效性. 相似文献
15.
为了消除时空变化表达过程中语义的不一致性,将时空变化前后的实体集、变化类型、规则作为变化表达的3个基本元素,利用数据+知识包的形式建立了基于3个基本元素的时空变化表达的三元模型CAR,即变化类型C、变化属性集A和变化判定规则集R,其中规则集中的规则利用IF-THEN方式描述,利用属性集A和规则集的运算判定C,从而解决了目前时空变化表达方法存在的无法表达变化原因的缺陷,而且规则表达便于计算机程序实现。 相似文献
16.
Strategic (control) knowledge typically specifies how a target task is solved. Representing such knowledge declaratively remains a difficult and practical knowledge engineering challenge. The key to addressing this challenge rests on two observations. One, strategic knowledge comprises two finer types of knowledge: subgoaling knowledge used to construct the goal structure for each problem situation pertaining to a target task, and goal-sequencing knowledge used to choose which subgoal in this goal structure is to be pursued at any given moment. Second, when subgoaling knowledge is explicit and expressed in declarative ontological terms, it is possible to fully express goal-sequencing knowledge in the same declarative terms. Building on these observations, we achieve three things. First, we analyse several conventional knowledge-based applications whose subgoaling and goal-sequencing knowledge is implicit, showing that making their subgoaling knowledge explicit permits (re)representing their goal-sequencing knowledge declaratively. Among the applications analysed are MORE and NEOMYCIN. Second, upon studying the roles of goal-sequencing knowledge vis-á-vis subgoaling knowledge, we develop a declarative formalism for representing goal-sequencing knowledge. Finally, we discuss and illustrate key benefits from using our declarative formalism, including an enhanced ability to validate and reuse goal-sequencing knowledge. 相似文献
17.
提出了一种新的基于生成-判别模型的目标检测与跟踪方法。利用DAISY特征描述子所具有的对光照、形变、视角、尺度的不变性以及计算高效的特点,提取目标稳定的特征点并加以表达,形成生成模型;采用霍夫森林分类器作为判别模型,用以训练目标图像块。在后续视频序列中利用目标的检测结果和判别码本的相似性测量对模型进行更新,构建一个动态自适应的判别码本。实验证明这种将快速有效的DAISY描述子和识别率高、鲁棒性强的霍夫森林分类器相结合的算法,跟踪精度高、实时性较好,具有目标局部防遮挡能力和不同分辨率下的识别能力。 相似文献
18.
近年来,知识表示学习已经成为知识图谱领域研究的热点。为了及时掌握当前知识表示学习方法的研究现状,通过归纳与整理,将具有代表性的知识表示方法进行了介绍和归类,主要分为传统的知识表示模型、改进的知识表示模型、其他的知识表示模型。对每一种方法解决的问题、算法思想、应用场景、评价指标、优缺点进行了详细归纳与分析。通过研究发现,当前知识表示学习主要面临关系路径建模、准确率、复杂关系处理的挑战。针对这些挑战,展望了采用关系的语义组成来表示路径、采用实体对齐评测指标、在实体空间和关系空间建模,以及利用文本上下文信息以扩展KG的语义结构的解决方案。 相似文献
19.
领域本体提供了丰富的概念集,是领域知识共享的基础。讨论了电子教学系统中课程知识体系的组织与本体表示方法,构造了基于领域本体的知识发现模型,阐述了基于领域概念对相似性的本体映射过程,实现了基于单元知识的电子教学资源的灵活共享。 相似文献
20.
在谣言检测的问题上,现有的研究方法无法有效地表达谣言在社交网络传播的异构图结构特征,并且没有引入外部知识作为内容核实的手段。因此,提出了引入知识表示的图卷积网络谣言检测方法,其中知识图谱作为额外先验知识来帮助核实内容真实性。采用预训练好的词嵌入模型和知识图谱嵌入模型获取文本表示后,融合图卷积网络的同时,能够在谣言传播的拓扑图中更好地进行特征提取以提升谣言检测的精确率。实验结果表明,该模型能够更好地对社交网络中的谣言进行检测。与基准模型的对比中,在Weibo数据集上的精确率达到96.1%,在Twitter15和Twitter16数据集上的F1值分别提升了3.1%和3.3%。消融实验也表明了该方法对谣言检测皆有明显提升效果,同时验证了模型的有效性和先进性。 相似文献