共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
ZrO2强韧化MoSi2复合材料显微结构和性能 总被引:1,自引:0,他引:1
通过对热压合成制备的ZrO2 MoSi2复合材料显微组织及其断口形貌分析,结合硬度、抗弯强度、断裂韧度等力学性能和孔隙率、晶粒度的测试,初步探讨了ZrO2颗粒强韧化MoSi2复合材料的机制。结果表明,复合材料中ZrO2粒子沿着MoSi2晶界偏聚,抑制MoSi2晶粒长大;复合材料断口晶粒细小,裂纹扩展曲折,呈现出沿晶与穿晶的混合型断裂特性;ZrO2颗粒通过第二相强化和细化晶粒使复合材料强度得到提高,通过细化晶粒、裂纹偏转和分支、形成微裂纹等机制的综合作用增韧复合材料。 相似文献
3.
通过反应烧结成功地制得了in-situ SiC/MOSi_2复合材料,该复合材料的组织均匀致密,相对密度达97.8%,强化相SiC的粒径小于1μm,体积分数为19.8%.复合材料室温抗弯强度为542MPa,断裂韧性5.21MPa·m~(1/2),维氏硬度12.21 GPa;在1200℃和1400℃时的抗压强度为596MPa和175MPa,800℃时的维氏硬度为8.2 GPa.在Al_2O_3和SiC磨盘上表现出优异的耐磨性能。 相似文献
4.
5.
6.
7.
WSi2/MoSi2复合粉末材料的机械合金化合成 总被引:3,自引:0,他引:3
通过机械合金化和热处理工艺成功地制备了MoSi2 50%(摩尔分数x)WSi2复合粉末材料,利用X射线衍射手段分析了相的形成过程,并从热力学和球磨能量角度比较了MoSi2和WSi2相生成的难易程度。球磨40h后在高于1000℃热处理可获得(Mo,W)Si2合金;因G^0(MoSi2)<G^0(WSi2),WSi2相较MoSi2难生成,其所需球磨能量分别为120.240kJ/g和30.060kJ/g。 相似文献
8.
MoSi2 的熔点高、抗氧化性好 ,是目前最为理想的一种高温结构材料。但其在潜在的高温结构应用方面 ,仍存在室温断裂韧性和延性差等重要缺陷。添加Nb的MoSi2 复合材料已大大改善了MoSi2 的力学性能 ,尤其是断裂韧性。但就目前看 ,添加Nb或W等难熔金属效果仍不十分理想 ,因为它们与MoSi2 基体反应强烈 ,有降低抗氧化性能和增大密度的不良态势。此外 ,Nb增强MoSi2 复合材料还会降低其室温和高温强度。本研究旨在通过机械合金化方法制成了含细晶粒尺度的MoSi2 粉料及MoSi2-Nb复合粉料 ,并通过脉冲放电烧结… 相似文献
9.
10.
以熟焦、炭纤维、B_4C、SiC、Si、TiO_2和TiC为原料、采用原位合成及热压技术研究了不同TiO_2和TiC含量对多组分碳/陶复合材料的组成、结构和性能的影响。在烧结过程中TiO_2或TiC与B_4C反应原位生成TiB_2,Si和TiO_2分别与C反应生成SiC和TiC,这些陶瓷相的生成对提高碳/陶复合材料的力学性能有显著作用。加入TiO_2比TiC能使碳/陶复合材料在较低的温度下实现致密化烧结,获得了抗弯强度达430 MPa的碳/陶复合材料。 相似文献
11.
12.
13.
14.
ZrO2/Si3N4颗粒增强MoSi2基复合材料的显微组织和力学性能 总被引:1,自引:0,他引:1
采用放电等离子烧结法(SPS)制备了不同体积分数的MoSi2及其复合材料,研究了复合材料的显微组织和力学性能.结果表明:10%ZrO2/20%Si3N4/MoSi2复合材料的致密度、显微硬度、抗压强度、断裂韧性分别为92.3%、15.17 GPa、2105 MPa、6.61 MPa·m1/2.与20%ZrO2/MoSi2复合材料相比,断裂韧性下降2.9%,显微硬度和抗压强度分别提高了22.8%,13.4%;与20%Si3N4/MoSi2复合材料相比,断裂韧性提高了5.3%,显微硬度和抗压强度相近;经500℃氧化300 h,氧化增重与ZrO2和Si3N4单独增强的相近,均是纯MoSi2的1/10左右,抗氧化效果显著. 相似文献
15.
MoSi2基复合材料的研究进展 总被引:2,自引:0,他引:2
讨论了目前MoSi2基复合材料的主要体系、制备技术、显微组织与力学性能、界面问题、氧化行为以及MoSi2基复合材料的应用,并对其研究进行了展望。 相似文献
16.
17.
真空熔烧工艺参数对Co基合金—碳化钨复合涂层组织结构和性能的影响 总被引:2,自引:0,他引:2
选用钴基合金—25 vol%WC复合料作为试验材料,并用真空熔烧方法在45号钢表面制得复合涂层。用金相显微镜、扫描电子显微镜和X射线衍射仪观察和分析复合涂层的组织结构。在石腊基础油润滑条件下,应用MHK—500环—块滑动磨损试验机进行滑动磨损试验。测定真空熔烧工艺参数对复合涂层组织结构、强度、硬度和摩擦磨损性能的影响。在综合分析的基础上,给出了钴基合金—25 vol%WE复合涂层最佳的真空熔烧工艺参数为:熔烧温度为1180℃,保温时间为2min。 相似文献