首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The degeneration of the substantia nigra that characterises Parkinson's disease may cause an alteration in sensitivity of striatal dopamine receptors. The development of denervation supersensitivity has been held to be responsible for some of the effects of chronic levodopa therapy. The rotating rodent is an animal model commonly used to study the phenomenon of striatal dopamine receptor supersensitivity, and to investigate drugs which may prove to be beneficial in the treatment of Parkinson's disease. We have investigated as to whether long-term oral administration of levodopa to mice with unilateral destruction of striatal dopaminergic nerve terminals influences dopaminergic receptor denervation supersensitivity as judged by the circling response following systemically administered levodopa. It does not do so and the relevance of these findings to the treatment of Parkinson's disease is discussed.  相似文献   

2.
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation of L-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditary L-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment with L-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated that L-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   

3.
Rat pituitary intermediate lobe contains two types of serotonin-immunoreactive nerve terminals. Most of them are dopaminergic, in which serotonin acts as a false transmitter, while the rest are true serotoninergic nerves. In the present study, release of the false transmitter serotonin from the dopaminergic nerve terminals was studied by loading the neurons in vivo with serotonin precursor L-tryptophan and MAO inhibitor pargyline, which results in accumulation of false transmitter serotonin. Subsequently pituitary neurointermediate lobe complexes were incubated in the presence of various agents. Potassium induced dramatic release of serotonin. This release was Ca(2+)-dependent, as demonstrated by an inhibition by Mg2+, and transporter-independent, since it was unaffected by GBR 12909 (a dopamine transport inhibitor). Tyramine and sodium nitroprusside, a nitric oxide donor, caused slight to remarkable release of serotonin. This release was inhibited by GBR 12909, suggesting that it was transporter-dependent. Presynaptic stimulation with apomorphine or haloperidol, dopamine receptor agonist or antagonist, respectively, or isoproterenol, agonist of the beta-adrenergic receptor, did not significantly release serotonin. Thus, it seems that presynaptic receptors per se cannot induce release of significant amounts of serotonin from the IL dopaminergic fibers. Our results suggest that false transmitter serotonin in the IL dopaminergic nerve terminals is released primarily by the classical exocytotic release mechanism, but may also be partly released by the transporter-dependent, non-exocytotic release.  相似文献   

4.
Atoxyl causes destruction of both afferent and efferent nerve endings. Degeneration of afferent nerve terminals occurred even though the adjacent hair cell had a normal ultrastructure. The degeneration of the efferent nerve endings took place at the same time as the adjacent cell disintegration. Earlier studies on the effects of atoxyl have shown that it also induces damage to the stria vascularis and Reissner's membrane, thus interfering with endolymph metabolism (Anniko & Wers?ll, 1975; Anniko, 1975a, b). The afferent nerve terminals may be more sensitive to changes in the environment (endolymph) than are the surrounding structures, including efferent nerve endings, hair cells and supporting structures, and would therefore be the first structures to disintegrate.  相似文献   

5.
OBJECTIVE: Tourette's disorder is characterized by chronic fluctuating motor and vocal tics. Despite extensive investigation of the neuropathophysiology of the disorder by a wide array of methodologies, its neurobiochemical substrate is still unclear. Converging evidence, however, suggests a primary role of the dopaminergic system, particularly within the basal ganglia. METHOD: This study examined the integrity of presynaptic dopaminergic function in children with Tourette's disorder, using positron emission tomography and the tracer [18F]fluorodopa (FDOPA). Accumulation of FDOPA in synaptic terminals, a measure of DOPA decarboxylase activity, was quantified in caudate nucleus, putamen, frontal cortex, and midbrain (i.e., substantia nigra and ventral tegmentum). RESULTS: Subjects with Tourette's disorder showed higher FDOPA accumulation than controls in the left caudate nucleus (by 25%; p = .03) and right midbrain (by 53%; p = .08). CONCLUSION: These findings provide evidence of dopaminergic dysfunction in children with Tourette's disorder which affects both cell nuclei and nerve terminals. Based on the known regulation of DOPA decarboxylase activity by post- and presynaptic receptors, and by extracellular dopamine concentration, abnormal activity in this enzyme may reflect deficits in a variety of functional elements of the dopamine system. The precise mechanism underlying an up-regulation of DOPA decarboxylase activity needs to be identified in future studies.  相似文献   

6.
Evidence is emerging that oestrogen, besides acting via classical nuclear receptors, can rapidly influence the physiology of nerve cells through other mechanisms. Oestrogens have been shown to modulate the differentiation and function of embryonic midbrain dopaminergic neurones by stimulating neurite outgrowth, expression of tyrosine hydroxylase mRNA, dopamine uptake and release in spite of the fact that dopaminergic cells in the prenatal midbrain do not express the classical oestrogen receptor. This study therefore intended to unravel possible signal transduction pathways activated by oestrogen which might be associated with the above oestrogen effects. As a physiological second-messenger mechanism, we studied the influence of oestrogen on fluctuations of intracellular Ca2+ levels [Ca2+]i by microspectrofluorimetry of the Ca2+-sensitive indicator Fura-2, in primary cultures from embryonic mouse midbrains. 17Beta-estradiol (10 nM-1 pM) but not 17alpha-estradiol increased [Ca2+]i within 1-3 s in a dose-dependent way. Removal of extracellular Ca2+ abrogated K+-stimulated Ca2+ rise but did not affect 17beta-estradiol stimulation. Pretreatment of cells with thapsigargin (1 microM, 10 min), an inhibitor of Ca2+-pumping ATPases in the endoplasmic reticulum, abolished the 17beta-estradiol effect but not the K+-stimulated [Ca2+]i rise. Oestrogen effects on [Ca2+]i were completely mimicked by using a membrane-impermeant oestrogen-BSA construct. In order to identify oestrogen-sensitive cells, some cultures were subsequently immunostained for microtubule-associated protein II, tyrosine hydroxylase, or GABA. All oestrogen-sensitive cells were immunocytochemically characterized as neurones, and about half of these responsive neurones was found to be dopaminergic or GABAergic. These results demonstrate that 17beta-estradiol is capable of rapidly modulating physiological parameters of developing midbrain neurones by directly interacting with specific membrane binding sites coupled to a signal transduction mechanism that causes a calcium release from intracellular Ca2+ stores. It is suggested that oestrogen effects on differentiation and function of midbrain dopaminergic neurones are mediated by intracellular Ca2+ signalling.  相似文献   

7.
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF) (). To investigate whether BDNF can influence the development of the retinal dopaminergic pathway, we performed intraocular injections of BDNF during the second or third postnatal week and visualized the dopaminergic system with tyrosine hydroxylase (TH) immunohistochemistry. Both regimens of BDNF treatment caused an increase in TH immunoreactivity in stratum 1 and stratum 3 of the inner plexiform layer (IPL). D2 dopamine receptor immunoreactivity, a presynaptic marker of dopaminergic cells (), was also increased in stratum 1 and stratum 3 of the inner plexiform layer. These data suggest that BDNF causes sprouting of dopaminergic fibers in the inner plexiform layer. Other neurochemical systems, for example, the cholinergic amacrine cells, remained unaffected. Similar effects were observed after injections of neurotrophin-3 and neurotrophin-4, but not nerve growth factor. Analysis of whole-mounted TH-immunolabeled retinae revealed hypertrophy of dopaminergic cells (+41% in soma areas; p < 0.01) and an increase of labeled dopaminergic varicosities in stratum 1 of the IPL (+51%; p < 0.01) after BDNF treatment. The opposite was observed in mice homozygous for a null mutation of the bdnf gene: dopaminergic cells were atrophic (-22.5% in soma areas; p < 0.05), and the density of TH-positive varicosities in stratum 1 was reduced (57%; p < 0.01). We conclude that BDNF controls the development of the retinal dopaminergic network and may be particularly important in determining the density of dopaminergic innervation in the retina.  相似文献   

8.
We clarified the roles of IL-1 beta in peripheral neural regeneration after axotomy in a three-dimensional collagen gel culture system ranging from a single neurone to a dorsal root ganglion (DRG) explant with its associated nerve bundles. Application of 30 U/ml IL-1 beta to the culture systems clearly enhanced neural regeneration. This regeneration was evident in transected nerve terminals of DRG explants with or without associated nerve bundles, but not in dissociated single neurones. Neural survival was not affected by IL-1 beta in any of these culture systems. These results suggest that IL-1 beta stimulates surrounding non-neuronal cells to secrete neurotrophic factors, thus enhancing neurite regeneration from transected nerve terminals in cultured adult DRG explants.  相似文献   

9.
In vivo neuroprotective effects of melatonin on the nigrostriatal dopaminergic system in rats unilateral 6-hydroxydopamine (6-OHDA) lesions were tested. Two weeks after lesioning the dopamine receptor agonist, apomorphine produced rotational asymmetry. In contrast, melatonin treatment significantly reduced the motor deficit following apomorphine challenge. Analysis by tyrosine hydroxylase (TH) immunocytochemistry revealed the loss of cell bodies in the substantia nigra (SN) and absence of terminals in the dorsolateral striatum ipsilaterally. Melatonin treatment also resulted in the survival of dopaminergic neurons in SN and TH-immuoreactive terminals in the dorsolateral striatum. These behavioral and histochemical results may indicate a neuroprotective action of melatonin and suggest a potential pharmacological role in the treatment of Parkinson's disease.  相似文献   

10.
An early and highly specific decrease in glutathione (GSH) in the substantia nigra is associated with Parkinson's disease, and low levels of GSH lead to the degeneration of cultured dopaminergic neurons. Using immature cortical neurons and a clonal nerve cell line, it is shown that a decrease in GSH triggers the activation of neuronal 12-lipoxygenase (12-LOX), which leads to the production of peroxides, the influx of Ca2+, and ultimately to cell death. The supporting evidence includes: 1) inhibitors of arachidonate metabolism and 12-LOX block cell death induced by GSH depletion; 2) there is an increase in 12-LOX activity and a membrane translocation in HT22 cells, and an induction of the enzyme in primary cortical neurons following the reduction of GSH; 3) 12-LOX is directly inhibited by GSH; and 4) exogenous arachidonic acid potentiates cell death. These data show that the LOX pathway is a critical intermediate in at least some forms of neuronal degeneration.  相似文献   

11.
Wearing-off phenomenon that complicates levodopa therapy of Parkinson's disease has been attributed to a reduction in striatal dopamine storage due to the progressive degeneration of presynaptic dopaminergic terminals. To determine whether postsynaptic mechanisms also contribute to these response fluctuations, the duration of the antiparkinsonian response in parkinsonian patients grouped by disease severity was compared following discontinuation of a steady-state optimal-dose infusion of apomorphine. Although the plasma half-life of this dopamine receptor agonist remained constant, its mean efficacy half-time declined from 66 minutes in early, levodopa-naive patients to 33 minutes in advanced, complicated parkinsonians (p < 0.005). Since the motor effects of apomorphine do not depend on the presence of dopaminergic terminals, changes at the postsynaptic level undoubtedly contribute to the diminished response duration. The only slightly greater attenuation of levodopa's motor effects observed previously under similar conditions suggests these postjunctional alterations, possibly involving relatively plastic striatal dopaminoceptive systems, account for most of the shortening in the duration of levodopa action that underlie wearing-off fluctuations.  相似文献   

12.
Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions.  相似文献   

13.
Digital corpuscles in the dermal papillae of the mouse toe pad have been studied using light and electron microscopy of serial thick and thin sections, and silver impregnations of frozen sections. These corpuscles are ellipsoid in shape and approximately 10-30 mum in diameter. They consist of one to three lamellar cells, nerve fibers and a capsule. These digital corpuscles are regarded as small Meissner corpuscles. The capsule is perineural epithelium. One or two myelinated nerve fibers and occasionally an unmyelinated nerve fiber enter the corpuscle. The axon terminals contain many mitochondria and a variable population of vesicular profiles. These terminals are ellipsoid or discoid in shape with the long axis parallel to the skin surface. The cytoplasmic plates (or lamellae) of the lamellar cells are arranged parallel to the skin surface, as is the cleft between the bilaterally symmetrical stacks of lamellae. Small processes extend from the expanded terminal of the neurite into the cleft between the lamellae. The relationship of the neurite terminal and associated lamellar cells resembles in some respects the organization of the inner core of Pacinian corpuscles. Intraepidermal fibers derived from myelinated neurites of the corpuscle may extend to the superficial epidermis. Intraepidermal fibers derived from unmyelinated neurites usually terminate in the basal regions of the epidermis.  相似文献   

14.
The regulation of excitation-secretion coupling by Ca2+ channels is a fundamental property of the nerve terminal. Peptide toxins that block specific Ca2+ channel types have been used to identify which channels participate in neurotransmitter release. Subsecond measurements of [3H]-glutamate and [3H]dopamine release from rat striatal synaptosomes showed that P-type channels, which are sensitive to the Agelenopsis aperta venom peptide omega-Aga-IVA, trigger the release of both transmitters. Dopamine (but not glutamate) release was also controlled by N-type, omega-conotoxin-sensitive channels. With strong depolarizations, where neither toxin was very effective alone, a combination of omega-Aga-IVA and omega-conotoxin produced a synergistic inhibition of 60-80% of Ca(2+)-dependent dopamine release. The results suggest that multiple Ca2+ channel types coexist to regulate neurosecretion under normal physiological conditions in the majority of nerve terminals. P- and N-type channels coexist in dopaminergic terminals, while P-type and a omega-conotoxin- and omega-Aga-IVA-resistant channel coexist in glutamatergic terminals. Such an arrangement could lend a high degree of flexibility in the regulation of transmitter release under diverse conditions of stimulation and modulation.  相似文献   

15.
The neuronal differentiation of adrenal pheochromocytoma cells from human subjects was studied in vitro for periods of up to 65 days. Changes with time in culture were observed in both intracellular catecholamine content (progressive decreases in epinephrine, norepinephrine, and dopamine, except for a possible transient early increase in the latter) and in morphology (increases in neurite outgrowth) of cells cultured in control medium; supplementation of cultures with nerve growth factor resulted in a substantial increase in neurite formation. The effects on these changes of the presence in the culture medium of various steroids were examined. The addition of 11-oxygenated steroids (aldosterone, corticosterone, cortisol, or dexamethasone) at 10(-5) M concentrations caused at least 2.5-fold increases in mean intracellular dopamine and norepinephrine levels; with dexamethasone, 9-10-fold increases were observed. Intracellular epinephrine content was also enhanced by 11,17-oxygenated steroids (dexamethasone and cortisol), but not by the other 11-oxygenated compounds studied. These two 11,17-oxygenated glucocorticoids also inhibited the morphologic changes seen with extended periods in culture, decreasing the outgrowth of neurite projections and causing cells to attain a vacuolated and granular appearance; the presence of dexamethasone strongly inhibited the morphologic changes induced by nerve growth factor. 11-Deoxy steroid intermediates (pregnenolone, 11-deoxycorticosterone, and 11-deoxycortisol) had little or no effect on catecholamine content or on morphology. Preliminary observations suggest that C-18 and C-19 sex steroid hormones (17 beta-estradiol and testosterone) may have morphologic effects opposite to those of the 11-oxygenated compounds, showing a slight stimulatory influence on the formation of neurite projections, but no significant effect on catecholamine content.  相似文献   

16.
Normal cellular metabolism produces oxidants which are neutralized within cells by antioxidant enzymes and other antioxidants. An imbalance between oxidants and antioxidants has been postulated to lead to the degeneration of specific populations of neurons in neurodegenerative diseases, e.g. Parkinson's disease. The present study investigates whether overexpression of glutathione peroxidase, the enzyme which metabolizes hydrogen peroxide to water, can prevent or slow down neuronal injury in an animal model of Parkinson's disease. Transgenic mice overexpressing the human glutathione peroxidase gene under the control of the mouse hydroxymethylglutaryl-coenzyme A promoter and genetically matched control mice were injected intracerebroventricularly with the dopaminergic neurotoxin 6-hydroxydopamine. Seven days after injection, the number of tyrosine hydroxylase-positive nigral dopaminergic neurons was decreased by 52.4% and 20.5% in 6-hydroxydopamine-injected control and glutathione peroxidase transgenic mice, respectively. Similarly, 3 days after injection of the neurotoxin, striatal dopamine was decreased by 71.2% and 56.5%, respectively. Overexpression of glutathione peroxidase therefore partially protects dopaminergic neurons against 6-hydroxydopamine-induced toxicity.  相似文献   

17.
Young mice challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which selectively destroys the substantia nigra dopaminergic neurons in the midbrain, exhibit spontaneous recovery of dopaminergic nerve terminals. However, such recovery becomes attenuated with age. Here we report that newly sprouted fibers originate from spared dopaminergic neurons in the ventral tegmental area. We found that interleukin-1 (IL-1), an immune response-generated cytokine that can enhance dopaminergic sprouting when exogenously applied, increased dramatically in the denervated striatum of young mice (2 months) compared with middle-aged mice (8 months) after MPTP treatment. Young mice displayed a maximal 500% induction of IL-1alpha synthesis that remained elevated for several weeks in the dorsal and ventral striatum, whereas middle-aged mice exhibited a modest 135% induction exclusively in the dorsal striatum for a week. IL-1alpha immunoreactivity was localized in GFAP-immunoreactive hypertrophied astrocytes and neurons within the denervated striatum of young mice. However, no induction of IL-1alpha mRNA was seen in the midbrain in either age group despite glial activation. Because we have reported that IL-1 can regulate astroglia-derived dopaminergic neurotrophic factors, it was surprising that no changes were observed in acidic and basic fibroblast growth factor or glial cell line-derived neurotrophic factor mRNA levels associated with MPTP-induced plasticity of dopaminergic neurons in the striatum of young mice. Interestingly, we found that dopaminergic neurons express IL-1 receptors, thus suggesting that IL-1alpha could directly act as a target-derived dopaminergic neurotrophic factor to initiate or enhance the sprouting of dopaminergic axonal terminals. These findings strongly suggest that IL-1alpha could play an important role in MPTP-induced plasticity of dopaminergic neurons.  相似文献   

18.
The significance of guanine nucleotides and nucleosides in neurodegenerative disorders is suggested by recent reports that these molecules enhance neurite branching and astrocyte proliferation. The objective of this study was to investigate the influence of increased dopamine metabolism, produced by 5-day treatment of rabbits with reserpine (2 mg/kg) or levodopa (LD) (50 mg/kg), on striatal concentrations of guanosine, guanine, and their metabolites. Reserpine treatment decreased striatal guanosine by 41% and increased guanine by 50%, while LD decreased guanosine by 48% (all p < 0.01 vs. vehicle-treated controls). LD also increased guanine by 22% (not statistically significant). Xanthine and uric acid concentrations were unchanged. Because of the neurotrophic properties of guanosine and guanine, changes in striatal concentrations of these purines secondary to increased dopamine (DA) turnover may have relevance for survival of remaining dopaminergic neurons in Parkinson's disease (PD).  相似文献   

19.
The massive and prolonged stimulation of serotonin (5-HT)-release and the increased dopaminergic activity are responsible for the acute psychomimetic and psychostimulatory effects of 3,4-methylenedioxy-methamphetamine (MDMA, "ecstasy") and its congeners. In vulnerable subjects, at high doses or repeated use, and under certain unfavorable conditions (crowding, high ambient temperature), severe, in some cases fatal, averse systemic reactions (hyperthermia, serotonin-syndrome) may occur during the first few hours. Animal experiments revealed the existence of similar differences in vulnerability and similar dose- and context-related influences on a similar sequence of acute responses. The severity of these acute systemic responses is closely related to the severity of the long-term damage to 5-HT axon terminals caused by the administration of substituted amphetamines. Attempts to identify the mechanisms involved in this selective degeneration of 5-HT presynapses brought to light a multitude of different factors and conditions which either attenuate or potentiate the loss of 5-HT terminals caused by MDMA and related amphetamine derivatives. These puzzling observations suggest that the degeneration of 5-HT presynapses represents only the final step in a sequence of events which compromise the ability of 5-HT terminals to maintain their functional and structural integrity. Substituted amphetamines selectively tax energy metabolism in 5-HT presynapses through their ability to exchange with 5-HT and to dissipate transmembrane ion gradients. The active carrier systems in the vesicular and presynaptic membrane operate at a permanently activated state. The resulting energy deficit can no longer adequately restored by the 5-HT presynapses when their availability of substrates for ATP production is additionally reduced by the hyperthermic and other energy consuming reactions which are elicited by the systemic administration of substituted amphetamines. The exhaustion of energy in 5-HT nerve terminals compromised all energy-requiring endogenous mechanisms involved in the regulation of transmembrane-ion exchange, internal Ca(++)-homeostasis, prevention of oxidative stress, detoxification, and repair. Above a critical threshold the failure of these self-protective mechanisms will lead to the degeneration of the 5-HT axon terminals. Based on the role of 5-HT as a global modulatory transmitter-system involved in the stabilization and integration of impulse flow between distributed multifocal neuronal networks, the partial loss of 5-HT presynapses must be expected to impair the ability of these networks to maintain the integrity of signal flow pattern, and increase the likelihood of switching to unstable information processing. Behavioral responding may therefore become more dominated by activities generated in individual networks, and hitherto "buffered" personality traits and predisposition may become manifested as defined psychiatric syndromes in certain predisposed subjects.  相似文献   

20.
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors--in contrast to p75NTR-associated signaling--stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号