共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel in-line surface-induced dissociation (SID) device was designed and implemented in a commercial QTOF instrument (Waters/Micromass QTOF II). This new setup allows efficient SID for a broad range of molecules. It also allows direct comparison with conventional collision-induced dissociation (CID) on the same instrument, taking advantage of the characteristics of QTOF instrumentation, including extended mass range, improved sensitivity, and better resolution compared with quadrupole analyzers and ion traps. Various peptides and a noncovalent protein complex have been electrosprayed and analyzed with the new SID setup. Here we present SID of leucine enkephalin, fibrinopeptide A, melittin, insulin chain-B, and a noncovalent protein complex from wheat, heat shock protein 16.9. The SID spectra were also compared to CID spectra. With the SID setup installed, ion transmission proved to be efficient. SID fragmentation patterns of peptides are, in general, similar to CID, with differences in the relative intensities of some peaks such as immonium ions, backbone cleavage b- versus y-type ions, and y- versus y-NH3 ions, suggesting enhanced accessibility to high-energy/secondary fragmentation channels with SID. Furthermore, these results demonstrate that the in-line SID setup is a valid substitute for CID, with potential advantages for activation of singly/multiply charged peptides and larger species such as noncovalent protein complexes. 相似文献
2.
Xia Y Chrisman PA Erickson DE Liu J Liang X Londry FA Yang MJ McLuckey SA 《Analytical chemistry》2006,78(12):4146-4154
A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary radio frequency is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton-transfer reactions. For the modified instrument, the mass resolving power is approximately 8000 for a wide m/z range, and the mass accuracy is approximately 20 ppm for external calibration and approximately 5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MS(n) experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z-type fragment ions. 相似文献
3.
We propose and demonstrate a new method for multiple-stage mass spectrometry (MSn), collision-activated infrared multiphoton dissociation (CA-IRMPD), which is very effective for the quadrupole ion trap mass spectrometer (QITMS). CA-IRMPD uses a combination of focused laser irradiation (beam radius, approximately 0.4 mm) and collisional activation by a supplemental AC voltage between endcap electrodes. This combination enables IRMPD, which has conventionaLly been ineffective above 10(-4) Torr, to be used under a standard bath gas pressure of 2-8 mTorr. CA-IRMPD can produce richer spectra of product ions than CID or IRMPD while maintaining high sensitivity and mass resolution; thus, it will contribute to an accurate determination of peptide sequences. 相似文献
4.
Methods for bidirectional ion transmission between distinct quadrupole arrays were developed on a quadrupole/time-of-flight tandem mass spectrometer (QqTOF) containing three quadrupoles (ion guide Q0, mass filter Q1, and collision cell Q2) and a reflectron TOF analyzer, for the purpose of implementing multistage ion/ion reaction experiments. The transfer efficiency, defined as the percentage of ions detected after two transfer steps relative to the initial ion abundance, was found to be about 60% between Q2 and Q0 (with passage through the intermediate array (Q1)) and almost 100% between Q2 and Q1. Efficient ion transfer enabled new means for executing MSn experiments on an instrument of this type by operating Q1 in rf/dc mode for performing multiple steps of precursor/product ion isolation while passing ions through Q1 or trapping ions in Q1. In the latter case, the Q1 functioned as a linear ion trap. Either collision induced dissociation (CID) or ion/ion reactions can be conducted in between each stage of mass analysis. MS3 or MS4 experiments were developed to illustrate the charge increase of peptide ions via two steps of charge inversion ion/ion reactions, CID of electron-transfer dissociation (ETD) products and CID of a metal-peptide complex formed from ion/ion reactions. 相似文献
5.
Thermally assisted collision-induced dissociation (TA-CID) provides increased dissociation in comparison with CID performed at ambient temperature in a quadrupole ion trap mass spectrometer. Heating the bath/collision gas during CID increases the initial internal energy of the ions and reduces the collisional cooling rate. Thus, using the same CID parameters, the parent ion can be activated to higher levels of internal energy, increasing the efficiency of dissociation and the number of dissociation pathways. The increase in the number of dissociation pathways can provide additional structural information. A consequence of the increase in initial internal energy is the ability to use less power to effect collisional activation. This allows lower q(z) values to be used and, thus, a greater mass range of product ions to be observed. TA-CID alleviates the problems associated with traditional CID and results in more available information than traditional CID. 相似文献
6.
The fragmentation of natural peptides using dynamic collision-induced dissociation (DCID), a novel fragmentation method for quadrupole ion traps, is demonstrated. Using leucine enkephalin as a diagnostic molecule, the fragmentation efficiencies and energetics of DCID are compared with other methods of collisional activation in ion traps such as conventional on-resonance excitation and high-amplitude short-time excitation (HASTE). A typical fragmentation efficiency of approximately 20% is achieved for DCID, which is significantly lower than conventional CID (maximum near 80%). Tandem mass spectra of two other peptides, substance P and oxidized insulin alpha-chain, demonstrate that product ion spectra for DCID are comparable to conventional or HASTE CID. Because DCID achieves fragmentation during the standard mass acquisition scan, no extra time is necessary for on-resonance excitation or product ion collection, so analysis times are reduced by a minimum of 10-15% depending on the scanning conditions. DCID therefore offers more tandem mass spectra per second than conventional methods of collisional activation, which could be highly advantageous for bottom-up proteomics separations. 相似文献
7.
Gabelica V Tabarin T Antoine R Rosu F Compagnon I Broyer M De Pauw E Dugourd P 《Analytical chemistry》2006,78(18):6564-6572
We hereby explore the effects of irradiating DNA polyanions stored in a quadrupole ion trap mass spectrometer with an optical parametric oscillator laser between 250 and 285 nm. We studied DNA 6-20-mer single strands and 12-base pair double strands. In all cases, laser irradiation causes electron detachment from the multiply charged DNA anions. Electron photodetachment efficiency directly depends on the number of guanines in the strand, and maximum efficiency is observed between 260 and 275 nm. Subsequent collision-induced dissociation (CID) of the radical anions produced by electron photodetachment results in extensive fragmentation. In addition to neutral losses, a large number of fragments from the w, d, a*, and z* ion series are obtained, contrasting with the w and (a-base) ion series observed in regular CID. The major advantage of this technique, coined electron photodetachment dissociation (EPD) is the absence of internal fragments, combined with good sequence coverage. EPD is therefore a highly promising approach for de novo sequencing of oligonucleotides. EPD of nucleic acids is also expected to give specific radical-induced strand cleavages, with conservation of other fragile bonds, including noncovalent bonds. In effect, preliminary results on a DNA hairpin and on double strands suggest that EPD could also be used to probe intra- and intermolecular interactions in nucleic acids. 相似文献
8.
A new Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) has been constructed in our laboratory. The instrument employs surface-induced dissociation (SID) as an activation method for obtaining structural information on biomolecules in the gas phase. Tandem SID mass spectra can be acquired using either a continuous or a pulsed mode of operation. Collision energy of precursor ion is controlled by a dc offset of the ICR cell. This approach eliminates defocusing of the ion beam by the ion-transfer optics as a function of ion kinetic energy and constitutes a significant improvement over our previous experimental setup. Furthermore, it can be easily implemented on any FTICR mass spectrometer. Very high signal-to-noise ratios of 200-500 were obtained in single-scan SID mass spectra of model peptides with acquisition time less than 1.1 s. Reasonable SID signal was detected in single-scan spectra with total acquisition time of only 0.3 s. The high signal-to-noise ratio and the fast acquisition time point on a potential application of SID for high-throughput studies in FTICR MS. 相似文献
9.
We present a novel, hybrid ion trap/time-of-flight mass spectrometer that is based on a planar multipole design. Compared with Paul trap/time-of-flight instruments, this design possesses the principal advantages of higher injection efficiency and more homogeneous extraction fields. We demonstrate the viability of the concept and describe the characterization of a first prototype. Ions can be injected into the trap with little mass discrimination and stored for several minutes. A resolution of over 1300 is achieved in reflectron mode, and the influence of the RF amplitude and pressure on the resolution is analyzed. We suggest several applications in which this new instrument could offer advantages over existing technology. 相似文献
10.
Intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source was constructed and interfaced with a 6-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies. First MALDI-SID results in FT-ICR are presented, demonstrating unique advantages of SID over conventional FT-ICR MS ion activation techniques for structural characterization of singly protonated peptide ions. Specifically, we demonstrate that SID on a diamond surface results in a significantly better sequence coverage for singly protonated peptides than SORI-CID. A combination of two effects contributes to the improved sequence coverage: shattering of peptide ions on surfaces opens up a variety of dissociation channels at collision energies above 40 eV, and second, wide internal energy distribution deposited by collision with a stiff diamond surface provides an efficient mixing between the primary reaction channels that are dominant at low internal energies and extensive fragmentation at high internal excitation that results from shattering. Activation of MALDI-generated ions by collisions with surfaces in FT-ICR MS is a new powerful method for characterization and identification of biomolecules 相似文献
11.
A multiplexing method for performing MS/MS on multiple peptide ions simultaneously in a quadrupole ion trap mass spectrometer (QITMS) has been developed. This method takes advantage of the inherent mass bias associated with ion accumulation in the QITMS to encode the intensity of precursor ions in a way that allows the corresponding product ions to be identified. The intensity encoding scheme utilizes the Gaussian distributions that characterize the relationship between ion intensities and rf trapping voltages during ion accumulation. This straightforward approach uses only two arbitrary waveforms, one for isolation and one for dissociation, to gather product ion spectra from N precursor ions in as little as two product ion spectra. In the example used to illustrate this method, 66% of the product ions from five different precursor peptide ions were correctly correlated using the multiplexing approach. Of the remaining 34% of the product ions, only 6% were misidentified, while 28% of the product ions failed to be identified because either they had too low intensity or they had the same m/z ratio as one of the precursor ions or the same m/z ratio as a product ion from a different precursor ion. This method has the potential to increase sample throughput, reduce total analysis times, and increase signal-to-noise ratios as compared to conventional MS/MS methods. 相似文献
12.
Stone E Gillig KJ Ruotolo B Fuhrer K Gonin M Schultz A Russell DH 《Analytical chemistry》2001,73(10):2233-2238
Peptide sequencing by surface-induced dissociation (SID) on a MALDI-ion mobility-orthogonal TOF mass spectrometer is demonstrated. SID of approximately 100-fmol amounts of model peptides HLGLAR (m/z 666.8), gramicidin S (m/z 1142.5), and bovine insulin b chain (m/z 3495.5) was accomplished using hydrocarbon-coated gold grids and approximately 20-eV collision energies. The current version of the instrument achieves a mobility resolution of approximately 20 and TOF mass resolution better than 200. Peptide sequences of four peptides from a tryptic digest of cytochrome c (approximately 1 pmol deposited) were obtained. The advantage of IM-SID-o-TOF-MS is that a single experiment can be used to simultaneously measure the molecular weights of the tryptic peptide fragments (e.g., peptide mass mapping) and partial sequence analysis, (e.g., real-time tandem mass spectrometry.) 相似文献
13.
Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer 总被引:7,自引:0,他引:7
Griffin TJ Gygi SP Rist B Aebersold R Loboda A Jilkine A Ens W Standing KG 《Analytical chemistry》2001,73(5):978-986
We describe an approach to the quantitative analysis of complex protein mixtures using a MALDI quadrupole time-of-flight (MALDI QqTOF) mass spectrometer and isotope coded affinity tag reagents (Gygi, S. P.; et al. Nat. Biotechnol. 1999, 17, 994-9.). Proteins in mixtures are first labeled on cysteinyl residues using an isotope coded affinity tag reagent, the proteins are enzymatically digested, and the labeled peptides are purified using a multidimensional separation procedure, with the last step being the elution of the labeled peptides from a microcapillary reversed-phase liquid chromatography column directly onto a MALDI sample target. After addition of matrix, the sample spots are analyzed using a MALDI QqTOF mass spectrometer, by first obtaining a mass spectrum of the peptides in each sample spot in order to quantify the ratio of abundance of pairs of isotopically tagged peptides, followed by tandem mass spectrometric analysis to ascertain the sequence of selected peptides for protein identification. The effectiveness of this approach is demonstrated in the quantification and identification of peptides from a control mixture of proteins of known relative concentrations and also in the comparative analysis of protein expression in Saccharomyces cerevisiae grown on two different carbon sources. 相似文献
14.
A hybrid quadrupole time-of-flight mass spectrometer featured with ion trapping capabilities was employed for quantitative profiling of total extracts of endogenous phospholipids. Simultaneous acquisition of precursor ion spectra of multiple fragment ions allowed detection of major classes of phospholipids in a single experiment. Relative changes in their concentration were monitored using a mixture of isotopically labeled endogenous lipids as a comprehensive internal standard. Precursor ion scanning spectra were acquired simultaneously for acyl anions of major fatty acids in negative ion mode and identified the fatty acid moieties and their relative position at the glycerol backbone in individual lipid species. Taken together, a combination of multiple precursor ion scans allowed quantitative monitoring of major perturbation in phospholipid composition and elucidating of molecular heterogeneity of individual lipid species. 相似文献
15.
A novel ion trap time-of-flight hybrid mass spectrometer (qIT-TOF MS) has been applied for peptide sequencing in proteolytic digests generated from spore mixtures of Bacilli. The method of on-probe solubilization and in situ proteolytic digestion of small, acid-soluble spore proteins has been recently developed in our laboratory, and microorganism identification in less than 20 min was accomplished. In this study, tryptic peptides were generated in situ from complex spore mixtures of B. subtilis 168, B. globigii, B. thuringiensis subs. Kurstaki, and B. cereus T, respectively. MALDI analysis of bacterial peptides generated was performed with an average mass resolving power of 6200 and a mass accuracy of up to 10 ppm using a trap-TOF tandem configuration. Precursor ions of interest were usually selected and stored in the quadrupole ion trap with their complete isotope distribution by choosing a window of +/- 2 Da. Sequence-specific information on isolated protonated peptides was gained via tandem MS experiments with an average mass resolving power of 4450 for product ion analysis, and protein and bacterial sources were identified by database searching. 相似文献
16.
Observed peptide gas-phase fragmentation patterns are a complex function of many variables. To systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends were observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. Finally, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot. 相似文献
17.
Noncovalent duplex DNA/drug complexes formed between one of three 14-base pair non-self-complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisionally activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross section of the phosphate backbone at 10.6 mum promotes highly efficient dissociation within short irradiation times (<2 ms at 50 W) or using lower laser powers and longer irradiation times (<15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low-mass cutoff associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multiadduct dissociation in order to increase MS/MS sensitivity, and a two-stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes. 相似文献
18.
Electron capture dissociation was implemented in a digital ion trap without using any magnetic field to focus the electrons. Since rectangular waveforms are employed in the DIT for both trapping and dipole excitation, electrons can be injected into the trap when the electric field is constant. Following deceleration, electrons reach the precursor ion cloud. The fragment ions produced by interactions with the electron beam are subsequently analyzed by resonant ejection. [Glu(1)]-Fibrinopeptide B and substance P were used to evaluate the performance of the current design. Fragmentation efficiency of 5.5% was observed for substance P peptide ions. Additionally, analysis of the monophosphorylated peptide FQ[pS]EEQQQTEDELQDK shows that in the resulting c- and z-type ions, the phosphate group is retained on the phophoserine residue, providing information on which amino acid residue the modification is located. 相似文献
19.
Carado A Passarelli MK Kozole J Wingate JE Winograd N Loboda AV 《Analytical chemistry》2008,80(21):7921-7929
A hybrid quadrupole orthogonal time-of-flight mass spectrometer optimized for matrix-assisted laser desorption ionization (MALDI) and electrospray ionization has been equipped with a C 60 cluster ion source. This configuration is shown to exhibit a number of characteristics that improve the performance of traditional time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments for the analysis of complex organic materials and, potentially, for chemical imaging. Specifically, the primary ion beam is operated as a continuous rather than a pulsed beam, resulting in up to 4 orders of magnitude greater ion fluence on the target. The secondary ions are extracted at very low voltage into 8 mTorr of N 2 gas introduced for collisional focusing and cooling purposes. This extraction configuration is shown to yield secondary ions that rapidly lose memory of the mechanism of their birth, yielding tandem mass spectra that are identical for SIMS and MALDI. With implementation of ion trapping, the extraction efficiency is shown to be equivalent to that found in traditional TOF-SIMS machines. Examples are given, for a variety of substrates that illustrate mass resolution of 12,000-15,600 with a mass range for inorganic compounds to m/ z 40,000. Preliminary chemical mapping experiments show that with added sensitivity, imaging in the MS/MS mode of operation is straightforward. In general, the combination of MALDI and SIMS is shown to add capabilities to each technique, providing a robust platform for TOF-SIMS experiments that already exists in a large number of laboratories. 相似文献
20.
An ion trap/ion mobility/quadrupole/time-of-flight mass spectrometer has been developed for the analysis of peptide mixtures. In this approach, a mixture of peptides is electrosprayed into the gas phase. The mixture of ions that is created is accumulated in an ion trap and periodically injected into a drift tube where ions separate according to differences in gas-phase ion mobilities. Upon exiting the drift tube, ions enter a quadrupole mass filter where a specific mass-to-charge (m/z) ratio can be selected prior to collisional activation in an octopole collision cell. Parent and fragment ions that exit the collision cell are analyzed using a reflectron geometry time-of-flight mass spectrometer. The overall configuration allows different species to be selected according to their mobilities and m/z ratios prior to collision-induced dissociation and final MS analysis. A key parameter in these studies is the pressure of the target gas in the collision cell. Above a critical pressure, the well-defined mobility separation degrades. The approach is demonstrated by examining a mixture of tryptic digest peptides of ubiquitin. 相似文献