首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We employ self-consistent mean-field (SCMF) theory in studying the body-centered cubic (bcc) spheres of block copolymers in the presence of a neutral solvent. First we examine the accuracy of the dilution approximation then analyze the dependence of the bcc structural sizes with copolymer volume fraction ?, the interaction parameter χAB, and degree of copolymerization N. Our results reveal that both distribution of each component and the micro-structural length scales are greatly influenced by each parameter ?, χAB, and N. As expected, with decreasing ?, more solvent distributes non-uniformally in the segregated domains, therefore deviation from the dilution approximation increases. This also suggests that when the effective segregation parameter ABN is fixed, a larger deviation is expected as χABN increases (i.e. ? decreases). Although when both χABN and ? are fixed, decreasing N (i.e. increasing χAB) enlarges the deviation from the dilution approximation. Furthermore, this solvent non-uniformity behavior is so significant that it even affects the dependence of the domain spacing L* and the matrix length Λ* with respect to (χAB)effN=ABN near the ODT. When the systems are in molten state and/or in the concentrated regime, both L* and Λ* exhibit a sharp increase behavior as ODT is approached, due to many of the minority blocks being pulled from the spherical domains and swelling the matrix. With increasing solvent amount and/or χABN, we observe that the increase of the degree for the minority blocks pulled from the spheres into the matrix near the ODT is not as significant as that in the melt. As such, the sharp increase behavior in L* as well as Λ* near the ODT smoothens and even disappears.  相似文献   

2.
I.A. Zucchi 《Polymer》2005,46(8):2603-2609
Polystyrene (PS, Mn=28,400, PI=1.07), poly(methyl methacrylate) (PMMA, Mn=88,600, PI=1.03), and PS (50,000)-b-PMMA (54,000) (PI=1.04), were used as modifiers of an epoxy formulation based on diglycidyl ether of bisphenol A (DGEBA) and m-xylylene diamine (MXDA). Both PS and PMMA were initially miscible in the stoichiometric mixture of DGEBA and MXDA at 80 °C, but were phase separated in the course of polymerization. Solutions containing 5 wt% of each one of both linear polymers exhibited a double phase separation. A PS-rich phase was segregated at a conversion close to 0.02 and a PMMA rich phase was phase separated at a conversion close to 0.2. Final morphologies, observed by scanning electron microscopy (SEM), consisted on a separate dispersion of PS and PMMA domains. A completely different morphology was observed when employing 10 wt% of PS-b-PMMA as modifier. PS blocks with Mn=50,000 were not soluble in the initial formulation. However, they were dispersed as micelles stabilized by the miscible PMMA blocks, leading to a transparent solution up to the conversion where PMMA blocks began to phase separate. A coalescence of the micellar structure into a continuous thermoplastic phase percolating the epoxy matrix was observed. The elastic modulus and yield stress of the cured blend modified by both PS and PMMA were 2.64 GPa and 97.2 MPa, respectively. For the blend modified by an equivalent amount of block copolymer these values were reduced to 2.14 GPa and 90.0 MPa. Therefore, using a block copolymer instead of the mixture of individual homopolymers and selecting an appropriate epoxy-amine formulation to provoke phase separation of the miscible block well before gelation, enables to transform a micellar structure into a bicontinuous thermoplastic/thermoset structure that exhibits the desired decrease in yield stress necessary for toughening purposes.  相似文献   

3.
Poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) (PMMA-PEO-PMMA) triblock copolymers were synthesized using atom transfer radical polymerization (ATRP) and halogen exchange ATRP. PEO-based macroinitiators with molecular weight from Mn = 2000 to 35,800 g/mol were used to initiate the polymerization of MMA to obtain copolymers with molecular weight up to Mn = 82,000 g/mol and polydispersity index (PDI) less than 1.2. The macroinitiators and copolymers were characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. The melting temperature and glass transition temperature of the copolymers were measured by differential scanning calorimetry (DSC). Crystallinities of the PEO blocks were determined from the WAXS patterns of both homopolymers and block copolymers, which revealed the fragmentation of PEO blocks due to the folding of the PMMA chains. Interestingly, the fragmentation was less pronounced when cast on surfaces compared to that in bulk, as measured by GISAXS. Solvent casting was used to control the morphology of the copolymers, permitting the formation of various states including amorphous, induced micellar with a PMMA core and flower-like PEO arms, and a cross-linked gel. Atomic force microscopy (AFM) was used to visualize the different copolymer morphologies, showing micellar and amorphous states.  相似文献   

4.
Li-Ting Lee  Sheng Shu Hou 《Polymer》2006,47(25):8350-8359
Phase behavior and miscibility with positive deviation from linear Tg-composition relationship in a copolymer/homopolymer blend system, poly(2-vinyl pyridine)-block-poly(ethylene oxide) (P2VP-b-PEO)/poly(p-vinyl phenol) (PVPh), were investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and solid-state 13C nuclear magnetic resonance (13C NMR), optical microscopy (OM), and scanning electron microscopy (SEM). Optical and electron microscopy results as well as NMR proton spin-lattice relaxation times in laboratory frame () all confirmed the miscibility as judged by the Tg criterion using DSC. In comparison to the literature result on a homopolymer/homopolymer blend of P2VP/PVPh, fitting with the Kwei equation on the Tg-composition relationship for the block-copolymer/homopolymer blend of P2VP-b-PEO/PVPh blend system yielded a smaller q value (q = 120) for P2VP-b-PEO/PVPh than that for P2VP/PVPh blend (q = 160). The FT-IR and 13C NMR results revealed hydrogen-bonding interactions between the pendant pyridine group of P2VP-b-PEO and phenol unit in PVPh, which is responsible for the noted positive deviation of the Tg-composition relationship. Comparison of the shifts of hydroxyl IR absorbance band, reflecting the average strength of H-bonding, indicates a decreasing order of P2VP/PVPh > P2VP-b-PEO/PVPh > PEO/PVPh blends. The PEO block in the copolymer segment tends to defray the interaction strength in the P2VP-b-PEO/PVPh blends because of relative weaker interaction between PEO and PVPh than that between P2VP and PVPh pairs. A comparative ternary (P2VP/PEO)/PVPh blend was also studied as the controlling experiments for comparison to the P2VP-b-PEO/PVPh blend. The thermal behavior and interaction strength in (P2VP/PEO)/PVPh ternary blends are discussed with those in the P2VP-b-PEO/PVPh copolymer/homopolymer blend.  相似文献   

5.
Thermal polymerization of methyl (meth)acrylate (MMA) was carried out using 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) and cumyl dithionaphthalenoate (CDN) as chain transfer agents. The kinetic study showed the existence of induction period and rate retardation, especially in the CDN mediated systems. The molecular weights of the polymers increased linearly with the monomer conversion, and the molecular weight distributions (Mw/Mns) of the polymers were relatively narrow up to high conversions. The maximum number-average molecular weights (Mns) reached to 351?900 g/mol (Mw/Mn = 1.47) and 442?400 g/mol (Mw/Mn = 1.29) in the systems mediated by CPDN and CDN, respectively. Chain-extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA-block-polystyrene (PMMA-b-PSt) copolymer with controlled structure and narrow Mw/Mn. Thermal polymerization of methyl acrylate (MA) in the presence of CPDN, or benzyl (2-phenyl)-1-imidazolecarbodithioate (BPIC) also demonstrated “living”/controlled features with the experimented maximum molecular weight 312?500 g/mol (Mw/Mn = 1.57). The possible initiation mechanism of the thermal polymerization was discussed.  相似文献   

6.
The AB2 monomer, 3,5-bis(4-fluorobenzoyl)phenol was synthesized via an improved four-step scheme. It was polymerized to form the corresponding fluoride-terminated hyperbranched polymer with higher molecular weight than previously reported, as evidenced by higher glass-transition temperature (Tg=159 °C vs. 140-143 °C). The homopolymerization showed a bimodal molecular weight distribution that was also observed for other related linear-hyperbranched systems. The AB2 monomer was then copolymerized with 4-fluoro-4′-hydroxybenzophenone (AB monomer), in weight ratios of 1:3, 1:1 and 3:1 to afford the respective hyperbranched poly(ether-ketones) with variable degrees of branching. The 1:1 copolymer had Tg value (212 °C) that was significantly (35 °C) higher than both linear and hyperbranched homopolymers. Only the 1:3 copolymer was semi-crystalline, displaying melting at 340 °C and its wide angle X-ray scattering (WAXS) pattern indicated that its crystal structure is exactly the same as that of the linear homopolymer. The WAXS results of the copolymers correlated well with differential scanning calorimetry and themogravimetric analysis results.  相似文献   

7.
A.E. Ivanov  I.Yu. Galaev 《Polymer》2004,45(8):2495-2505
Cross-linking of polyvinylalcohol (PVA) by boronate-containing copolymer of N,N-dimethylacrylamide (DMAA, 1) was studied and compared to cross-linking of PVA by borate buffers in weakly alkaline solutions. The copolymer of Mw=19,000 g mol−1 containing 9 mol% N-acryloyl-m-aminophenylboronic acid (NAAPBA, 2) was prepared by free radical polymerization of the monomers, exhibiting copolymerization constants r1=0.84 and r2=2.2. Due to multipoint interaction of the copolymer with PVA via monodiols, the intermolecular cross-linking required for seven-fold and 10-fold lower boron concentrations as compared to borate buffers of pH 8.6 and 7.5, respectively. In rheological measurements, PVA-copolymer gels exhibited storage moduli (Gmax) comparable to those of PVA-borate gels prepared at 7.5-fold higher boron concentration and the same pH 8.6, what testified to the similar concentration of cross-links in the gels. Therefore, DMAA-NAAPBA copolymer is a more effective cross-linker of PVA than borate. The PVA-copolymer gel exhibited much higher relaxation time (97 s) compared to PVA-borate gels (≤20 s) indicating a longer lifetime of junction zones. The ‘shape stability’ of the gel is suggested to originate in the structure of junctions, containing several boronate-diol complexes, between the macromolecules of PVA and the copolymer.  相似文献   

8.
The effect of polydispersity on dilute solution properties and microphase separation of polydisperse high-molecular-weight (Mw > 105 g mol−1) polystyrene-block-poly(styrene-co-acrylonitrile) diblock copolymers, PS-block-P(S-co-AN), was studied in this work. For experiments, a series of diblock copolymers with variable weight fractions of acrylonitrile units (wAN = 0.08-0.29) and length of block P(S-co-AN) was synthesized using nitroxide-mediated radical polymerization (NMP) technique, namely, by chain extension of nitroxide-terminated polystyrene (PS-TEMPO). According to light scattering and viscometry measurements in dilute tetrahydrofuran (THF) solutions the studied diblock copolymers assumed random coil conformation with the values of characteristic structure factor Rg/Rh = 1.50-1.76. It was found that polydisperse diblock copolymers being in strong segregation limit (SSL) self-assembled into microphase-separated ordered morphologies at ordinary temperature. The long periods of lamellar microdomains were larger compared to theoretical predictions for hypothetical monodisperse diblock copolymers. It was demonstrated by means of SAXS and TEM that a transition from a lamellar (LAM) to irregular face-centered-cubic (FCC) morphology occurred with increasing volume fraction of P(S-co-AN) block.  相似文献   

9.
The phase behaviour of the binary copolymer systems SMA-SAN and SAN-SAN can be described well using the copolymer repulsion model. However, the phase behaviour of the ternary system consisting of SMA-SAN(1)-SAN(2) with SAN(1) and SAN(2) having different chemical compositions is not known. In order to reveal this, the composition of the blends, the composition of the SMA (ranging from 22 to 34 wt% MA) at constant SAN compositions (26, 34 and 28, 32 wt% AN), the molar mass of the SMA (Mw=3.5 and 110 kg/mol) as well as the temperature (25 and 230°C) were varied. The number of phases was studied using differential scanning calorimetry (DSC) and a critical evaluation of the predicted and observed glass transition temperatures based on the Fox equation. The binodals and spinodals were calculated using the Flory-Huggins approach. From a comparison of predicted and observed miscibility, it is concluded that this ternary system can be described using the aforementioned model.  相似文献   

10.
Yingdong Xia  Tongfei Shi  Lijia An  Yuxi Jia 《Polymer》2008,49(25):5596-5601
Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that of rod-coil diblock copolymers. The perforated lamella was replaced by the cylinder when frod = 0.45, and the lamella was replaced by the perforated lamella when frod = 0.5 when the arms A1 and A2 had an equal length and the volume fraction of A3 arm was low enough. Simulations were also performed when the arms A1 and A2 had unequal lengths. These results demonstrate that simple branching in the coil induces interesting microphase transitions.  相似文献   

11.
Zhi Ma 《Polymer》2004,45(20):6789-6797
Dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) has been successfully performed in supercritical carbon dioxide at P=370 bar and T=65 °C with azobis(isobutyronitrile) as initiator and a hydrophilic/CO2-philic poly(ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) (PEO-b-PFDA) block copolymer as steric stabilizer. The PEO-b-PFDA (2K/21K) block copolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Spherical particles of poly(HEMA) were obtained in the range of 200-400 nm diameter size with a narrow particle size distribution (Dw/Dn<1.1). The effect of the stabilizer concentration on the dispersion polymerization was investigated from 20 w/w% down to 3.5 w/w% versus HEMA. Precipitation polymerization in the absence of stabilizer lead to the formation of large aggregates of partially coalesced particles whereas discrete spherical particles of poly(HEMA) were obtained by dispersion polymerization even at low concentration of PEO-b-PFDA (3.5 w/w% versus HEMA).  相似文献   

12.
ABA type MPDSAHy-b-PMEO2MAx-b-MPDSAHy (A = N-(3-(methacryloylamino)propyl)-N,N-dimethyl-N-(3-sulfopropyl) ammonium hydroxide (MPDSAH), B = 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA)) triblock copolymers with narrow polydispersity index were prepared by atomic transfer radical polymerization (ATRP) in the mixture of water/methanol with addition of sodium chloride. The copolymer solution was shown to exhibit UCST and LCST behaviors. The dual temperature sensitiveness was investigated via turbidity measurement and steady-state fluorescence spectroscopy. The UCST was found to be dependent upon the solution concentration, and UCST shifted towards LCST with the increment in the block length of MPDSAH block. In the selected low temperature region, the micropolarity of pyrene slightly increased due to the weak positive-negative interaction in diluted solution; while above LCST, pyrene experienced more hydrophobic milieu owing to the noticeable dehydration of PMEO2MA. The analysis of ethidium bromide displacement suggested the strong capability of MPDSAH homopolymer to bind DNA; MEO2MA moieties in copolymers weakened the binding ability of PMPDSAH to DNA, but 54-60% EB was still replaced by copolymers at complexing ratio of 10/1. AFM confirmed that PMPDSAH and copolymers were capable of condensing DNA to nanoparticles at an appropriate complexing ratio. Complexing with DNA, UCST of solution vanished, but LCST was slightly increased due to the enhanced hydrophilicity caused by liberation of negative charges.  相似文献   

13.
Haibo Li 《Polymer》2011,52(16):3550-3559
Poly(arylene ether sulfone) (PAES) multi-block copolymers bearing perfluoroalkylsulfonic acid moieties were prepared from hydrophilic and hydrophobic prepolymers. The latter were synthesized by reaction of N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl)pentafluoropropanesulfonate (HPPS) with bis-(4-fluorophenyl) sulfone (FPS), and biphenol (BP) with FPS, respectively. Prepolymers and multi-block copolymers were prepared at 180 °C in N,N-dimethylacetamide in the presence of K2CO3. The prepolymers were reacted overnight; the multi-block copolymers were reacted only 80 min to minimize transetherification. Prepolymers and multi-block copolymers were characterized using 1H and 13C NMR. 19F NMR provided molecular weight of hydrophilic prepolymers bearing aryl fluoride end groups. GPC was used to characterize the multi-block copolymers. Copolymer block lengths were determined by quantifying 13C NMR peak areas of quaternary carbon atoms adjacent to sulfur in FPS moieties. Hydrophilic and hydrophobic block lengths were in the range 9.4-23.4 and 4.4-11.8 repeating units, respectively. AFM showed phase separation for all block lengths. Conductivity at 80 °C and 100% relative humidity ranged from 6.2 to 34.3 mS/cm, with the best value obtained for hydrophilic/hydrophobic block lengths of 13.3/6.0.  相似文献   

14.
(1 − x)Pb(Sn1−yTiy)O3-xPb(Mg1/3Nb2/3)O3 (x = 0.1-0.4, y = 0.45-0.65) ternary system was prepared using two-step columbite precursor method. Phase structure of the synthesized ceramics was studied by using X-ray powder diffraction and the morphotropic phase boundary (MPB) curve of the ternary system was confirmed. The isothermal map of Curie temperature (TC) in the phase diagram was obtained based on the dielectric-temperature measurements. The coercive field EC and internal bias field Ei were found to increase with increasing PT content, while decrease with increasing PMN content. The optimum properties were achieved in the MPB composition 0.8Pb(Sn0.45Ti0.55)O3-0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity ?r, piezoelectric coefficient d33, planar electromechanical coupling kp, mechanical quality factor Qm and TC of being on the order of 3040, 530pC/N, 55.5%, 320 and 190 °C, respectively, exhibiting potential usage for high power application.  相似文献   

15.
Ayse Z. Aroguz 《Polymer》2004,45(8):2685-2689
The phase behavior of ternary blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), polystyrene (PS) and a 50/50 mole % statistical copolymer of o-chlorostyrene and p-chlorostyrene [p(oClS-pClS)] has been investigated by differential scanning calorimetry (DSC) and analyzed in terms of a Flory-Huggins mean-field segmental interaction parameter treatment. Both PS/PPO and PPO/p(oClS-pClS) binary blends exhibit single glass transition temperatures over the full composition range whereas the PS/p(oClS-pClS) system displays a substantial immiscibilty window which extends into the ternary phase diagram. In principle, ternary systems provide enhanced opportunities relative to binary systems for evaluating segmental interaction parameters χijs from experimental data because of the high sensitivity of phase boundary locations to these parameters and to component molecular weights. In this system the effect of these parameters on the phase boundary was studied experimentally and compared to calculated values.  相似文献   

16.
Yanling Xu  Rujiang Ma  Yingli An 《Polymer》2007,48(6):1711-1717
A novel double-hydrophilic block copolymer poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP) with low polydispersity which could respond to both temperature and pH stimuli in aqueous solution was synthesized by atom transfer radical polymerization. Micellization of the copolymer in aqueous solution was characterized by dynamic and static laser scattering, 1H NMR and transmission electron microscopy. In aqueous solution, the copolymer existed as unimer at pH 2.8 at 25 °C. When the temperature was raised to 50 °C at pH 2.8, the copolymer associated into spherical core-shell micelles with the PNIPAM block forming the core and the P4VP block forming the shell. On the other hand, when pH was increased from 2.8 to 6.5 at 25 °C, the copolymer associated into spherical core-shell micelles with the core formed by the P4VP block and the shell formed by the PNIPAM block. The process was reversible. The critical aggregation temperature of the block copolymer is 36 °C, and the critical aggregation pH value is 4.7.  相似文献   

17.
E.M. Woo  Kai Yun Cheng  C.C. Su 《Polymer》2007,48(19):5753-5766
Issues in blends of polymers of the same chemical repeat unit but with different tacticities were addressed by investigating on the phase behavior and interaction strength of binary blends of three polypropylenes of different tacticities, i.e., isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and atactic polypropylene (aPP) using polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Although blends of polypropylenes have been widely studied in the past, there are still on-going debates on true phase behavior (miscibility vs. upper critical solution temperature (UCST) or immiscibility). Except for several earlier theoretical predictions based on the Flory-Huggins mean field theories, UCST behavior had not been experimentally proven for blends of sPP/iPP or aPP/sPP, owing to interference from PP crystallinity. In addition, interaction strength of the blends of different tactic polypropylenes is yet to be established. Using the method of equilibrium melting points, the Flory-Huggins interaction parameter of the aPP/iPP blend was shown to possess a significantly negative value (χ12 = −0.21), which proves that the blend is indeed miscible in the melted amorphous as well as semicrystalline states as previously reported in the literature. However, the interaction parameters for the sPP/iPP and aPP/sPP blends were found to be nearly zero (χ12 = −0.02 and −0.0071, respectively, at T = 150-180 °C), indicating that the interactions in two blends are weak and that the corresponding phase behavior for them borders on immiscibility at ambient temperature. This study also utilized novel approaches in constructing UCST phase diagrams by separating the amorphous phase domains from the crystalline spherulites, yielding data plausible for experimentally determining the UCST in iPP/sPP blend vs. aPP/sPP blend.  相似文献   

18.
Salma Bilal 《Electrochimica acta》2007,52(17):5346-5356
Results of in situ UV-vis spectroelectrochemical studies of the electropolymerization of o-phenylenediamine (OPD), m-toluidine (MT) and the copolymerization of OPD with MT are reported. Electropolymerization was performed in aqueous acidic medium at a constant potential of ESCE = 1.0 V at an indium doped tin oxide (ITO) coated glass electrode. The course of homopolymerization was followed for MT and OPD solutions with various monomer concentrations. The spectral characteristics of the mixed solutions were studied at a constant concentration of MT and various concentrations of OPD in the comonomer feed. An absorption band at λ = 497 nm was assigned to the head-to-tail mixed dimer/oligomer resulting from the cross reaction between OPD and MT cation radicals. UV-vis spectra recorded during copolymerization show dependence of the growth of the band at λ = 497 nm on OPD concentration in the feed. At lower OPD feed concentration it appears as the major band in the corresponding spectra. The UV-vis spectra recorded for the copolymer films suggest the incorporation of both monomer units in the copolymer. The FT-IR spectra of the copolymers show the presence of phenazine type structures in the copolymer backbone.  相似文献   

19.
Jung Min Lee 《Polymer》2006,47(11):3838-3844
The dispersion polymerization of methyl methacrylate (MMA) has been carried out using polystyrene-block-poly(4-vinylpyridine) copolymer [P(S-b-4VP)], which was prepared by a reversible addition-fragmentation chain transfer (RAFT) method, as a steric stabilizer in an alcohol media. The stable polymer particles were obtained when the block copolymer concentrations increased from 1 to 10 wt% relative to the monomer and the average particle sizes decreased from 5.3 to 3.4 μm with the increasing concentration of the block copolymer. In particular, the incorporation of 2 wt% polystyrene-block-poly(4-vinylpyridine) produced 4.3 μm of monodisperse PMMA particles with 2.14% of Cv. Thus, the P(S-b-4VP) block copolymer prepared by the RAFT method is working not only as a steric stabilizer, but also in providing monodisperse micron-sized PMMA particles.  相似文献   

20.
Xuezhi Tang 《Polymer》2007,48(21):6354-6365
Novel amphiphilic block copolymers, poly(ethylene oxide)-b-poly(p-nitrophenyl methacrylate) (PEO-b-PNPMA) with controlled molecular weights and narrow molecular weight distribution were successively synthesized by ATRP of NPMA using PEO-Br as initiator. Self-assembling of the diblock copolymer PEO113-b-PNPMA28 in the different solvent mixtures yielded various morphologies of star micelle-like aggregates, such as spheres, vesicles, cauliflower-like aggregates and rod-like aggregates, which are determined by the nature of the common solvents and the selective solvents. Thus the critical selective solvent contents and the solvent contents in PNPMA-rich phase were measured, and they have the following order: ethanol > methanol > water, and THF > CH3NO2 > DMSO. The probable self-assembling mechanism is discussed. This method is convenient for preparation of multiple morphological star micelle-like aggregates in solution, especially from the amphiphilic block copolymers with relatively longer block shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号