首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium sorption and kinetics of acetone, methyl ethyl ketone (MEK), methyl n-propyl ketone (MnPK), and methyl i-propyl ketone (MiPK) uptake in uniform, biaxially oriented, semicrystalline polyethylene terephthalate films were determined at 35 °C and low penetrant activity. Sorption isotherms for all penetrants were well described by the dual-mode sorption model. Sorption and desorption kinetics were described either by Fickian diffusion or a two-stage model incorporating Fickian diffusion at short times and protracted polymer structural relaxation at long times. Diffusion coefficients and equilibrium solubility at fixed relative pressure decreased in the following order: acetone>MEK>MnPK>MiPK. Diffusion coefficients for each penetrant increased with increasing penetrant concentration.  相似文献   

2.
Sorption kinetics and equilibria for methanol, ethanol, and n-propanol in 0.544 μm diameter poly(methyl methacrylate) microspheres were determined at 35°C over a wide range of relative pressures. Sorption isotherms were concave to the pressure axis at low relative pressures and convex to the pressure axis at higher relative pressures. These results, considered in the context of recently reported data for high pressure sorption of gases in polymeric glasses, suggest that the S-shaped isotherms reported here are examples of a generalized isotherm which describes sorption behavior of all penetrants in glassy polymers if an appropriate range of concentration is traversed by the experimental protocol. The effects of dialating the microspheres by preswelling with methanol were studied by subsequent low pressure sorption of water, methanol, ethanol, and n-propanol at 35°C. The preswollen microspheres exhibited initially higher sorption capacities than the as-Received samples, but tended to consolidate with time following the preswelling treatment. The aging process, monitored by periodic short-term sorption with the various penetrant probes, was arrested by contacting the microspheres with an activity of n-propanol sufficient to maintain a sorbed concentration of approximately 1 wt %. The aging was significantly retarded by the presence of low concentrations of water and ethanol. Conversely, the aging process appeared to be essentially unaffected by the presence of correspondingly low concentrations of methanol. The complex kinetics describing the sorption of the various penetrants ranged from Fickian diffusion to polymer relaxation-controlled absorption, depending upon penetrant, relative pressure, and prior exposure history. The low temperature preswelling of the microspheres markedly increased the rate of sorption as well as the respective apparent equilibrium sorption.  相似文献   

3.
Knowledge of the sorption rate and solubility of CO2 in polymers are of great importance for developing technologies utilizing high‐pressure and supercritical CO2‐assisted processes. Many conventional techniques for measuring gas sorption have inherent complications when used at elevated pressures. In this work, we demonstrate the use of near‐IR spectroscopy as an accurate method to measure CO2 sorption kinetics and solubility in PET at elevated pressures. Sorption kinetics and solubility are measured at 0, 28, and 50°C between pressures of 57.1 and 175.2 atm. Both initially amorphous and initially partially crystalline samples of PET are studied, and the effects of the initial crystallinity are determined. In addition, the effects of CO2 processing on the final crystallinities of our samples are measured. Crystallization was induced in PET at 28 and 50°C over the range of pressures studied. However, at 0°C, no detectable crystallization occurred in PET, even in the presence of high pressures of CO2. The method demonstrated in this work could easily be extended to directly measure CO2 sorption in other polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 764–775, 2000  相似文献   

4.
Preeti Chandra 《Polymer》2009,50(1):236-12050
This paper reports the sorption and diffusion characteristics of methanol vapor in polyethylene terephthalate (PET). Amorphous PET, semicrystalline, biaxially oriented annealed and non-annealed samples have been studied for equilibrium sorption and kinetics of methanol. At activities of methanol less than 0.30, uptake shows Fickian kinetics and isotherm follows the Dual Mode model. Diffusion coefficients increase with penetrant concentration and are of the order of 10−10 cm2/s. Hysteresis during desorption and increase in solubility during resorption suggest methanol induced conditioning effects which may have detrimental effects on the barrier efficacy of PET. At activities greater than 0.30, swelling and relaxation effects occur and the isotherms show Flory-Huggins behavior for all three samples. Uptake follows two-stage kinetics fit by the Berens-Hopfenberg model. Greater polymer chain stability due to annealing reduces the extent of relaxation and improves the barrier efficacy over amorphous and non-annealed, oriented PET. For amorphous PET, at 80% activity and above, an induction time is observed which is absent in the semicrystalline films, suggesting strong relaxation effects in the amorphous phase of PET.  相似文献   

5.
The effects of activity and solvent strength of a number of organic penetrants upon their sorption kinetics and equilibria in poly(vinyl chloride) have been studied by gravimetric vapor and liquid sorption experiments at 30°C. For each solvent, the relation of equilibrium sorption to activity is well approximated by the Flory–Huggins equation with a characteristic value of the interaction parameter χ. The glass transition temperature Tg is depressed in direct proportion to the volume fraction of solvent absorbed; the composition corresponding to a Tg of 30°C, Cg (30°C), is in the range of 0.22–0.30 volume fraction for several common solvents. The form of the sorption kinetics varies with the ratio of the equilibrium sorption to Cg, and thus depends on the combined effects of χ, solvent activity, and plasticizing action. When the equilibrium sorption is less than about Cg/2, kinetics are Fickian, with the very low diffusivities typical of the glassy state; for sorption values between Cg/2 and Cg, anomalous kinetics are observed; and when the sorption is greater than Cg, transport in thin PVC films follows Case II kinetics. At high sorption levels, increasing film thickness produces a shift of the kinetics toward Fickian form with apparent diffusivity values typical of rubbery polymers.  相似文献   

6.
Uniform, submicron-diameter polystyrene (PS) and poly(methylmethacrylate) (PMMA) microspheres were dilated by preswelling with pure organic vapors followed by rapid removal of the preswelling penetrant by protracted evacuation of the preswelling chamber to a pressure of 10?3 mm Hg. Aging of the preswollen polymers was carried out both in vacuum and in the presence of various penetrants at sorbed concentrations typically less than 2 wt%. Inferences about relaxations of the polymers were based upon changes in concentrations of the penetrants within the microspheres, at a given temperature and penetrant activity, which result from aging in vacuum or in the presence of penetrant. The kinetics of the relaxations were monitored by probing the expanded glasses with relatively low concentrations of penetrants. In general, the continuous presence of these low concentrations of probe molecules either arrested or retarded the ensuing relaxation as compared with the aging that occurred in vacuum. A series of lower monohydric alcohols, lower n-alkanes, and some other similar penetrants were used as probes to test explicitly and systematically the effects of size and structure of the penetrant contacting the polymer during aging on the decay of excess sorption capacity of the preswollen glassy polymers. Decay of excess sorption in the presence of penetrant was evident only when molecularly small penetrants with interactive functional groups, alcohols for example, were sorbed into preswollen PMMA. This result suggested that the relaxation occurring in the presence of penetrant involved specific interactions between the penetrants and the carbonyl groups in the PMMA.  相似文献   

7.
Pure and mixed gas n-C4H10 and CH4 sorption and dilation in poly(1-trimethylsilyl-1-propyne) (PTMSP) are reported at temperatures ranging from −20 to 35 °C. The presence of n-C4H10 in the mixture considerably reduces CH4 solubility. For example, CH4 solubility (in the limit of zero CH4 fugacity) at 25°C decreases from 4.0 (pure gas) to 0.78 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.60. At −20 °C, CH4 solubility decreases by almost an order of magnitude, from 10.2 (pure gas) to 1.22 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.61. In contrast, n-C4H10 mixture sorption properties are not measurably affected by the presence of CH4. The dual mode sorption model parameters for CH4 and n-C4H10 in PTMSP were determined from pure and mixed gas sorption measurements, and this model can adequately describe the sorption data. The n-C4H10/CH4 mixed gas solubility selectivity in PTMSP decreases as temperature increases and as n-C4H10 activity increases. For example, at 25 °C, the n-C4H10/CH4 solubility selectivity decreases from 250 to 120 as n-C4H10 activity increases from 0.02 to 0.25. At −20 °C and an n-C4H10 activity of 0.24, the n-C4H10/CH4 solubility selectivity is 590. Penetrant-induced volume dilation of PTMSP can be adequately modeled by assuming that all swelling is caused by penetrant molecules sorbed in the polymer's dense equilibrium region (i.e., the Henry's law region) during sorption. However, the best fit partial molar volumes in the Henry's law region for the dilation data are considerably lower than the penetrant partial molar volumes in liquids, suggesting that further theoretical efforts are needed to develop predictive models of volume dilation in high free volume glassy polymers.  相似文献   

8.
9.
In this study, physical and thermodynamic properties of poly(2-phenyl-1,3-dioxolane-4-yl-methyl-methacrylate-co-styrene) (PDMMA-ST) were investigated by using inverse gas chromatography. Two groups of solvents with different chemical natures and polarities were used to obtain information about PDMMA-ST-solvent interactions: alcohols and alkanes. The specific retention volume (Vg 0), the sorption enthalpy (ΔH1 S), sorption free energy (ΔG1 S), sorption entropy (ΔS1 S), the weight fraction activity coefficients of solute probes at infinite dilution (Ω 1 ), and Flory-Huggins interaction parameters (χ 12 ) between polymer and solvents were determined for the interactions of PDMMA-ST with alcohols and alkanes by inverse gas chromatography in the temperature range of 333–473 K. Also, the solubility parameters of PDMMA-ST at infinite dilution were found by plotting the graph of [(δ 1 2/RT) - χ 12 /V1] versus solubility parameters, δ 1, of probes.  相似文献   

10.
S. Gopakumar 《Polymer》2005,46(23):10419-10430
A series of (NR/PU) block copolymers (BCs) was prepared from toluene diisocyanate (TDI), 1,3-butane diol (1,3-BDO), and hydroxyl-terminated liquid natural rubber (HTNR), by solution polymerisation. The swelling characteristics of the BCs were investigated. Diffusion profile in various solvents and the sorption kinetics were studied. Arrhenius and thermodynamic parameters were evaluated from the diffusion data. Finally, the influence of NCO/OH ratio on the swelling behaviour was also studied. The equilibrium sorption value (Q) decreased with increasing NCO/OH ratio for all the BCs. The samples have higher uptake of solvents with solubility parameter within a small range centred about 9 (cal/cm3)1/2. Highly polar and non-polar solvents show minimum uptake. It was observed that polarity factor predominates in the solvent transport through the present block copolymer systems. The sorption behavior is also found to vary with the NCO/OH ratio employed in the preparation of polyurethane (PU) oligomers.  相似文献   

11.
Li-Qiang Chu  Hai-Quan Mao 《Polymer》2006,47(21):7406-7413
The kinetics of moisture sorption/desorption in poly(terephthalate-co-phosphate) thin films was investigated in situ at T = 25 °C using optical waveguide spectroscopy (OWS). At low water activities, Fickian diffusion was observed for the initial phase of the sorption process, while at high activities, due to the clustering of water, a complex sorption behavior was found. The moisture sorption isotherms were analyzed according to both the Zimm and Lundberg model as well as the Brown model, which suggests the formation of clusters of water molecules in poly(terephthalate-co-phosphate) at water activities of α1 = 0.58 or higher. The water diffusion coefficient decreases with increasing water activity, which also suggests water cluster formation. A biphasic desorption behavior was also observed upon decreasing the water activity from α1 = 1 to 0. This study demonstrated the unique advantages of OWS in characterizing in situ the sorption/desorption behavior of penetrants in polymer thin films.  相似文献   

12.
Castor oil based chain extended polyurethanes (PUs) have been prepared using citric acid and maleic acid as chain extenders. Molecular transport of n‐alkanes into prepared carboxylic acid chain extended PUs has been studied at different temperatures, viz., 25, 40, and 60°C using a gravimetric sorption method. The sorption (S), the diffusion (D), and the permeation (P) coefficients for n‐alkane penetrants have been calculated. Transport data are affected by the nature of the interacting solvent molecules, molar volume, solubility parameters, temperature, and the structural variation of the chain extended PUs. The temperature dependence of the transport coefficient has been used to estimate the kinetic parameters for the processes of diffusion (ED) and permeation (EP) from the Arrhenius plots. The van't Hoff relation was used to obtain enthalpy (ΔH) and entropy (ΔS) of sorption process. POLYM. ENG. SCI., 47:2057–2064, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
The sorption of a variety of gases and organic vapors in poly(vinyl chloride) (PVC) powders has been studied gravimetrically with a recording microbalance and volumetrically with a gas pycnometer and an automatic surface area analyzer. For nitrogen, carbondioxide, vinyl chloride, methanol, acetone, n-butane, and benzene at low penetrant activities and temperatures below Tg, sorption isotherms exhibit the downward curvature characteristic of dual-mode sorption. The solubility of each of these penetrants is lower in heat-treated PVC samples than in samples recovered from the polymerization without additional heating. It has been possible to estimate the parameters of the dual-mode sorption model for carbondioxide, vinyl chloride, and methanol. The results indicate that the history-dependence of gas or vapor solubility is associated only with the “hole-filling” term of the dual-mode model; the normal dissolution or Henry's Law term is essentially unaffected by the prior heat treatment of the PVC.  相似文献   

14.
E Deiss 《Electrochimica acta》2002,47(25):4027-4034
Diffusion coefficients of Li+ in insertion electrodes determined by the potentiostatic intermittent titration technique (PITT) have been reported in the literature as being potential-dependent (and thus dependent on the degree of insertion). With this PITT method the diffusion coefficients DPITT are determined from the current response of potential-step experiments using an approach based on the Cottrell equation. This equation assumes as boundary conditions infinitely fast kinetics and a linear system with semi-infinite thickness. Using the example of a spinel-type LiδMn2O4 electrode it will be demonstrated that this potential dependence of DPITT is not real but occurs, because the inadmissible boundary condition of infinitely fast kinetics which is not fulfilled has been adopted. This will be demonstrated with the help of numerically simulated PITT data calculated with a constant diffusion coefficient D. Diffusion coefficients DPITT calculated from these simulated PITT data are potential dependent, even though the PITT experiments were simulated with a constant diffusion coefficient D. The inadmissible boundary condition of a linear system with semi-infinite thickness applied to a bed of spherical active particles with finite radii as represented by a LiδMn2O4 electrode leads to further deviations of DPITT which will be investigated.  相似文献   

15.
To test the molecular parameters concerning gas sorption in polymers, the concentration of CO2, N2O, CO, N2, CH4 and the noble gases Ne, He in glassy poly(butylene terephthalate) films (PBTP) has been studied gravimetrically with a recording microbalance at 25°C. The sorption isotherms exhibit downward curvature to the pressure axis. As neither solubility nor adsorption can explain the experimental results, analysis was carried out based on the dual-sorption model: gas dissolution and microvoid filling are considered as independent sorption mechanisms. The parameters of the dual-sorption model for the mentioned penetrants are determined. The results indicate that for parameter correlation the Lennard-Jones potential parameters give a rough idea, but size exclusion of gases in small diameter microvoids is proposed and special chemical interactions must be considered.  相似文献   

16.
Stable macroradicals of methyl methacrylate were prepared by the azobisisobutyronitrile-initiated polymerization of methyl methacrylate in hexane whose solubility parameter value (δ) differed from that of the macroradical by more than 1.8 hildebrand units and in 1-propanol at temperatures below its theta temperature (84.5°C). The rates of heterogeneous polymerization in hexane and 1-propanol were much faster than that of the homogeneous polymerization in benzene. Stable macroradicals were not obtained in benzene which was a good solvent nor at temperatures above the glass transition temperature (Tt) of the macroradicals. Thus, stable macroradicals of butyl methacrylate (Tg20°C) and and methyl acrylate (Tg3°C) were not obtained at a polymerization temperature of 50°C. Good yields of block copolymers of methyl methacrylate and acrylonitrile were obtained by the addition of acrylonitrile to the methyl methacrylate macroradical in methanol, ethanol, 1-propanol and hexane at 50°C. The rate of formation of the block copolymer decreased in these poor solvents as the differences between the solubility parameter of the solvent and macroradical increased.The block copolymer samples prepared at temperatures of 50°C and above were dissolved in benzene which is a non-solvent for acrylonitrile homopolymer, but is a good solvent for poly(methyl methacrylate) and the block copolymer. The presence of acrylonitrile and methyl methacrylate in the benzene-soluble macromolecule was demonstrated by pyrolysis gas chromatography, infra-red spectroscopy and differential thermal analysis.  相似文献   

17.
The diffusion of radioactively tagged n-hexadecane, n-dotriacontane, and a polybutadiene oligomer with molecular weight 1600 has been studied in 12 rubbery polymers. Diffusion coefficients were obtained from the theory for the thin smear method: for n-hexadecane and for n-dotriacontane (with one exception), in the form appropriate for a completely miscible polymer–penetrant pair, and for the oligomer in the form appropriate for slow entry of the penetrant across the penetrant–polymer interface. For the four flexible linear penetrants, n-dodecane, n-hexadecane, n-dotriacontane, and oligomer, the ratios of diffusion coefficients (or translational friction coefficients) are nearly the same in every polymer. It is concluded that these penetrants travel with similar segmentwise motions, although that is not the case with bulkier, more rigid penetrants. For the three normal paraffins, the friction coefficient is approximately proportional to molecular weight, but that for the oligomer is smaller than would be predicted on this basis.  相似文献   

18.
The sorption and diffusion of halogenated hydrocarbon penetrants through different ethylene–propylene–diene terpolymer (EPDM) blends, such as EPDM/natural rubber, EPDM/bromobutyl rubber, and EPDM/styrene butadiene rubber (50/50 w/w), were studied. The diffusion coefficient of halogenated penetrants fell in the range 1.5–14.52 × 10?7 cm2/s in the temperature range of 25–60°C. Transport data were affected by the nature of the interacting solvent molecule rather than its size and also by the structural variations of the EPDM blends. 1,2‐Dichloroethane showed a lower mass uptake compared to other penetrants. The temperature dependence of the transport coefficient was used to estimate the activation parameters, such as the activation energy of diffusion (ED) and the activation energy of permeation (Ep) from Arrhenius plots. The activation parameters for ED of aliphatic chlorinated organic penetrants was in the range 7.27–15.58 kJ/mol. These values fell in the expected range for rubbery polymers, well above their glass‐transition temperature. Also, the thermodynamic parameters, such as enthalpy and entropy, were calculated and fell in the range 2–15 kJ/mol and 3–54 J/mol/K, respectively. Both first‐ and second‐order transport kinetics models were used to investigate the transport kinetics, and first‐order kinetics were followed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1366–1375, 2003  相似文献   

19.
Solubility and diffusivity measurements of a probe gas (CO2), which has an inherently low solubility in the polymer, have been used to characterize residual porosity in polymeric latex films. Sorption isotherms resembling those of a glassy polymer were obtained, even though the glass transition temperature of the polymer was 1°C, about 30°C below the experimental temperature. Solvent cast films of the same polymer exhibited much lower solubilities, and followed the expected Henry's law behavior. CO2 solubility and diffusivity were found to decrease with aging time for the latex films, but did not quite reach the values of the solvent cast films, even after 75 days at room temperature. The sorption data could be described by the dual-mode sorption model, which is commonly employed in the analysis of glassy polymer sorption isotherms. Estimates of the amount of porosity were made from the sorption data, and values ranging from 0.6–0.03% were obtained for latex films aged from 62 h to 75 days, respectively. Our results suggest that permeability differences noted by others for latex and solvent cast films of the same polymer are due to the substantial solubility differences for low-solubility penetrants in these two types of films.  相似文献   

20.
The effects of polymer composition and penetrant molecular size on the solubility and diffusivity of alcohol vapors in a series of well characterized isoprene-methyl methacrylate copolymers and their corresponding homopolymers has been investigated at room temperature. The rate of sorption behavior changes progressively from Fickian to non-Fickian, to Case II to “Super Case II” transport with increasing methyl methacrylate (MMA) content in the polymers. The equilibrium solubility of the alcohols increases linearly with increasing penetrant molecular size for polymers which are above their glass transition temperature and decreases for polymers which are below their Tg. The solubility also initially increases as an approximately linear function of MMA content in the copolymers. At about 55 mole percent MMA, the sorbed concentration either levels off or passes through a maximum depending on the size of the penetrant. The apparent “diffusion coefficients” (D) decrease with increasing molecular volume of the penetrants. An exponential dependence was found between these two variables for PMMA. These “diffusion coefficients” also decrease exponentially with increasing MMA content in these polymers. However, at 55 mole percent MMA the copolymer undergoes a rubber to glass transition at the temperature of the experiments. On this basis, it is suggested that the hindered chain segmental motion contributes to the sorption process in addition to strictly thermodynamic considerations. Free volume theory can be used to explain the mechanism of diffusion through the rubbery polymers while the “hole” theory can be applied to explain the transport of the penetrants through the glassy polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号