首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional finite element model taking into account interfacial topography, porosity of plasma sprayed coatings, temperature dependent thermophysical parameters and phase change has been developed to simulate multipass laser remelting process. Temperature evolution, temperature gradient, melting pool shape and dimensions are simulated. The laser remelting experiments are carried out on the plasma sprayed WC–12Co coatings. The simulated results are in good agreement with the experimental measurements. After laser remelting, a denser and more homogenous coating is obtained. The microhardness of the coating is significantly enhanced owing to the dispersion strengthening, the fine grain strengthening and the solution strengthening, which is increased by three times compared with that of the plasma sprayed coatings.  相似文献   

2.
In the present research, mechanically alloyed Ni-Al powder was utilized to develop plasma sprayed coatings, and the effect of the spray distance and heat treatment on the phases, microstructure, and hardness of the coat- ings were examined. Coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and through microhardness measurements. Although mechanically al- loyed Ni-Al powder showed no intermetallic phases, the coatings did. Different spray distances from 5 to 19 cm were employed for plasma spray and the specimens were heat treated at different temperatures, then the amount of oxides, porosity and hardness of the coatings were changed according to the spray condition. The thermal energy of the plasma spray caused the formation of NiAl phases while particles flew to the substrate or after that. Extreme increase in heat treatment temperature and spray distance resulted in oxidation and reduction in the quality of the coating. Furthermore, the best spray distance and heat treatment temperature to gain the NiAl intermetallic coating were established.  相似文献   

3.
The diameter, velocity and temperature of stainless steel and tungsten carbide cobalt particles applied onto stainless steel substrates using a high velocity oxy-fuel (HVOF) torch were measured. The microstructure of the coatings produced was examined using a scanning electron microscope and coating thickness, porosity and roughness measured. Using the experimental spray parameters as inputs to a 3-D stochastic model we simulated coating formation. Measured values of coating thickness and porosity agreed well with predicted values while calculated surface roughness was somewhat higher than that observed in experiments. An object oriented finite element code (OOF) developed at the National Institute of Standards and Technology was used to calculate residual stresses in the coating. The model uses an adaptive meshing technique to discretize the coating microstructure into a mesh suitable for finite element analysis. To define the coating geometry we used either micrographs of coating cross-sections or computer generated images of coatings. Similar values of residual stress are obtained in either case. High stresses are present at the interface between the coating and substrate. The magnitude of stresses increases significantly with coating thickness. Stresses are relieved by voids such as pores or cracks in the coating. Residual stresses increase with coating temperature and can be decreased by preheating the substrate.  相似文献   

4.
Osteoblast-like cell response in variation with the air plasma sprayed (APS) TiO2 coating process parameters correlated with coating properties were investigated to evaluate the durability and biocompatibility of the surface-modified implant. The Taguchi technique was used to determine the coating properties affected by plasma spraying parameters on Ti-6AI-4V alloy substrate. The coating properties were characterized by porosity and surface roughness using an image analyzer and surf analyzer, respectively. The MG-63 osteoblast like cell morphology and proliferation data on TiO2 coated substrate were measured by SEM observation and direct cell counting. It was demonstrated that surface roughness increased as spray distance decreased but gas flow rates and spray distance were major factors in the case of porosity. The osteoblast adhesion morphology and proliferation data indicated that osteoblast-like cell morphology was not influenced by process parameters, but cell proliferation was affected to some extent by surface roughness and porosity among TiO2 coated specimens. Specifically, the difference between those of substrate and coating layer was relatively more visible.  相似文献   

5.
热喷涂涂层中孔隙的存在会降低涂层的耐蚀性,减少涂层寿命,而热喷涂工艺参数很大程度上影响涂层的孔隙率。本文采用计算机数值模拟和设计验证实验的分析方法,重点研究了JP-8000超音速火焰喷涂系统(HVOF)制备Fe基非晶涂层工艺参数中喷涂距离与涂层孔隙的关联性。利用商用计算软件Fluent计算平台,研究加入粉末粒子前,喷枪内火焰温度和速度的变化规律,以及加入非晶粉末后,不同喷涂距离条件下颗粒飞行过程的温度和速度的变化规律。仿真结果表明,喷涂距离为360~380 mm时,非晶粉末颗粒在撞击基板时处于半融化状态,颗粒在基板上具有良好的流动性,可获得孔隙率较低的涂层。验证实验结果与仿真结果一致。X射线衍射结果表明,粉末、不同喷涂距离所制备的涂层以及同成分的非晶条带均为完全非晶态结构。SEM和孔隙率统计结果表明,喷涂距离为370 mm时,涂层截面的孔隙较少,且孔隙率最低,为0.57%,验证了计算模拟优化的最佳喷涂距离范围。  相似文献   

6.
The properties of thermally sprayed coatings are dependent on many parameters such as the spraying material, substrate properties, and the injection parameters. In this study, the influence of two variable spray parameters (spraying distance and current) were investigated on molybdenum‐containing thermal spray coatings. Particularly, materials and surface characterizing properties were analyzed, and the dependence on each other was examined. The important surface parameters studied in this case are the porosity and the pore depth of the coatings. Following the correlation between spray parameters and coating properties, the influence of surface properties on the tribological behavior will be discussed, in comparison to an uncoated steel surface.  相似文献   

7.
Plasma spraying has wide range of applications which include corrosion, thermal and abrasion resistance coatings. In the present work, nickel and aluminium powders were ball milled and the same were thermal plasma processed to produce spherical nickel alumindes particles. Both ball milled and plasma processed powders were spray deposited on stainless steel (SS 304) substrate using atmospheric plasma spray technique (APS). The experiments were carried out for different plasma input power levels, torch to base distances and coating thicknesses. Microstructure, micro hardness, adhesive strength, and porosity of the coatings are reported and discussed. Effect of plasma processing parameters and plasma spheroidization of powders on coating properties has been evaluated and reported. High plasma power, low torch to base distance lead to high temperature supplied to in-flight particles which correspond to high hardness, low porosity and high adhesion. Spherical morphology and formation of nickel aluminide intermetallic were achieved by plasma spheroidization. Coatings prepared from plasma processed powders enhance the coating properties positively.  相似文献   

8.
The properties and performance of plasma sprayed hydroxyapatite (Ca10(PO4)6(OH)2, i.e. HA) coatings are closely related to their manufacturing process. The objective of the current study is to investigate the phase, structure and microstructure of the coatings and their formation mechanism due to different processing parameters. Hydroxyapatite powders were atmospherically plasma sprayed (APS) using various process parameters. The phase, structure and microstructure of the coatings were investigated and their microhardness measured. Both crystallinity and hydroxyl contents decreased with increasing spray power and stand-off distance (SOD), and increased from the coating interface to the surface. Crystallinity alone cannot reflect coating quality due to the existence of various forms of HA, i.e. unmelted, recrystallized and dehydroxylated, as well as the gradient structures consisting of these forms. Coating microstructure varied from a porous structure to a smooth glassy structure or a typical lamellar structure, and some newly formed nanocrystalline regions were revealed. These effects were associated with the temperature–time experiences of particles, their cooling rates and the heat and hydroxyl accumulation during coating buildup. The coating with highest recrystallization displayed the highest microhardness.  相似文献   

9.
Five representative types of WC-Co powders were selected to clarify the dependence of the structure of sprayed coatings on the structure of powders themselves. The WC-Co coatings were sprayed with the Jet-Kote process and plasma spraying as well. The structure of WC-Co coatings was primarily characterized by X-ray diffraction. The X-ray diffraction patterns of the sprayed coatings were illustrated compared with those of powders, which aims at a better understanding of the structure of thermally sprayed WC-Co coatings. The selected coating was also analysed by differential scanning calorimetry (DSC). The decarburizing process, and the effects of powder structure and spray conditions on the crystal structure of sprayed WC-Co coatings are discussed in detail.  相似文献   

10.
《Nanostructured Materials》1998,10(5):723-730
The present paper describes the synthesis and characterization of nanocrystalline CoCr (ASTM F75) coating produced by plasma spraying for possible surgical implant applications. The feedstock powders were synthesized by mechanical milling to produce irregular agglomerates with an average grain size of less than 100 nm. The powders were then introduced into an argon plasma spray to successfully produce a nanocrystalline coating. Scanning electron microscopy and transmission electron microscopy were used to study the morphology of the nanometric particles and the resultant sprayed coatings. Microhardness and porosity measurements were performed on the conventional and the nanocrystalline coatings to characterize and compare the physical and mechanical properties.  相似文献   

11.
Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the thermal sprayed coating, and the third layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermophysical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.  相似文献   

12.
The present study deals with an application of the Taguchi method to the optimization of a detonation spray process for alumina coatings. Coating experiments were conducted using the TaguchUfractional factorial (L8) design parametric study to optimize spray process parameters. The Taguchi design evaluated the effects of four detonation spray process parameters: acetylene to oxygen ratio, carrier gas flow rate, frequency of detonations and spray distance. The coating qualities evaluated were surface roughness, porosity, microhardness, and abrasion mass loss. The influence of process parameters on the as-sprayed coating qualities is discussed. The results of the study indicate that the higher fuel ratio and lower spray distance will result in higher hardness, lower porosity and lower abrasion mass loss. The Taguchi analysis employed in the present investigation led to optimized process parameters for the most abrasive wear resistant alumina coatings.  相似文献   

13.
目的以氧化锆粉末作为喷涂材料,使用等离子喷涂的方式制备出性能优异的氧化锆涂层。方法通过不同的工艺参数来对涂层的显微组织及性能进行优化,分别利用扫描电镜(SEM)、X射线衍射分析仪(XRD)等方法,研究了工艺参数对涂层显微组织影响,并通过高温氧化测试来研究涂层的抗高温性能。结果在其他喷涂条件固定的情况下,涂层的厚度与喷涂时送粉量有关,送粉量越高则涂层厚度越大;当改变喷涂距离时,涂层的致密度则随着喷涂距离的增加而降低;在高温氧化40h后,涂层表面没有发生明显变化。结论通过等离子喷涂制备的氧化锆涂层具有较好的致密度,孔隙率最低仅为3.24%;涂层具有良好的热稳定性,能够长时间在高温下稳定使用。  相似文献   

14.
等离子涂层孔隙研究进展   总被引:10,自引:0,他引:10  
总结了等离子涂层孔隙形成原因,孔隙率的测试,孔隙率对涂层弹性模量、热导率、残余应力的影响;介绍了喷涂工艺参数对孔隙率影响及涂层形成过程的数值模拟.目前主要以涂层的孔隙率作为研究重点,但孔隙率仅代表了涂层的密实程度,应进一步研究等离子涂层中孔隙的形状、大小及其对涂层性能的影响以及影响涂层孔隙结构的主要工艺参数.  相似文献   

15.
采用商用ANSYS14.5软件, 依据复合梁增层力学模型, 采用逐道逐层累积模型模拟了C/C复合材料表面等离子喷涂ZrC基涂层沉积残余应力的特征, 分析了SiC过渡层、第二相(SiC, MoSi2)和涂层厚度对ZrC基涂层残余应力的影响, 并进行了实验验证。结果表明, SiC过渡层有效缓解了涂层与基体的热失配应力。涂层体系的应力随着涂层厚度的增加逐渐减小, 符合应力松弛和叠加规律。在涂层内部的径向应力以拉应力为主, 基体中主要为压应力, 且在界面边缘存在压应力集中的极限区域, 易使涂层产生裂纹并沿界面扩展。该模拟采用逐道逐层累积的方法更逼近实际喷涂过程, 能更准确预测涂层的残余应力。  相似文献   

16.
Plasma sprayed coatings contain relatively large amount of pores. This is primarily due to the nature of deposition by the liquid droplets upon impact. This paper reports the modifications made in the pore size distribution of plasma sprayed yttria stabilized zirconia (YSZ) and Ti-6Al-4V/hydroxyapatite (HA) composite coatings following hot isostatic pressing (HIP). The pore size distribution was measured by a mercury intrusion porosimeter (MIP). The results indicated that the YSZ coatings which were HIPed for 1 hour and 3 hours in the temperature range 1000° to 1200°C and ∼185 MPa showed a small decrease in the average porosity (∼2.5%) for the 1 hour samples. However, the hardness increased ∼39%, and there was a corresponding increase in the coating density. This was due to reduction of the average pore size in the HIPed coatings. Thus, in the YSZ coatings, the pores responded to HIP by a general breakdown of large pores to smaller ones and effectively forming many 'new' interparticle contacts. Whilst the overall porosity was reduced marginally, the increase in physical property like hardness was significant because of the increase in interparticle and inter-lamellae contacts following HIP treatment. In the Ti-6A1-4V/HA composite coatings, the reduction of pores is most significant amongst the small pores. The porosity of the as sprayed 20 wt% HA composite was ∼19%. This value was reduced to 17% for the sample HIPed at 1,000%C for 1 hour. Although the reduction was relatively minor, the interesting aspect was the drastic reduction of small pores less than 0.3 μm. The average pore diameter was observed to increase from 0.1676 μm in the as sprayed coating to 0.787 μm in the sample HIPed at 1,000°C, as a result of the elimination of the micro-pores. Physical properties such as microhardness, Young's modulus and density increased substantially. This is believed to be aided mainly by the plastic deformation of the ductile Ti-6A1-4V phase during HIP. Thus modification of the pore size distribution or even average pore size can elicit substantial improvement in the properties in two different material coating, albeit the difference in the manner the modification occur.  相似文献   

17.
利用冷喷涂技术制备CoNiCrAlY涂层,并对涂层进行了真空预氧化处理。结合X射线衍射,扫描电镜,能谱分析等方法研究预氧化处理前后的CoNiCrAlY涂层在900℃的Na2SO4熔盐中的热腐蚀行为。结果表明:冷喷涂CoNiCrAlY涂层含氧量为0.12%(质量分数),孔隙率小于0.28%(体积分数)。真空预氧化处理在涂层表面生成厚约0.26μm连续、致密的α-Al_2O_3氧化膜;喷涂态涂层和预氧化涂层在热腐蚀150h后表面均生成了以α-Al_2O_3为主的致密连续氧化膜,保护了基体免受腐蚀破坏;真空预氧化处理有效减缓了S和O等元素向涂层内扩散的速率,从而提高了涂层的抗Na2SO4熔盐热腐蚀性能;高温热腐蚀对涂层的破坏作用远大于高温氧化。在相同温度下,涂层在单一Na2SO4熔盐中腐蚀时,Al的消耗速率约为高温氧化时的2倍。  相似文献   

18.
Process-Identification at Plasma Spraying Thermally Sensitive Materials Using an Infra-red Thermal Imaging System Nowadays so called thermally sensitive materials are deposited by thermal spray techniques. Due to the high temperature process an undesired alteration (evaporation, chemical decomposition) of the material could occur. Therefore, optimisation of the deposition based only on empirical methods may be deremental with respect to the coating properties. This study shows the potential of an IR thermal imaging technique as a process control for evaluation and optimisation of the deposition through better understanding of the thermal spray process. The spray trials presented are based on preliminary examinations carried out with diagnostic tools. Therefore it was possible to achieve defined air plasma sprayed coatings of hydroxyapatite with different coating and component properties. This is particularly of interest, since there exists only a standard for hydroxyapatite as starting material but not for plasma sprayed coatings. Hence the coatings had either high or low contents of undesired phases, different degrees of cristallinity and bond strengths-varying from 5 to 42 MPa. Besides the power levels and the way to obtain the power the carrier gas flow significantly influences the properties of the coatings.  相似文献   

19.
This study aims at gaining a better understanding of the microstructural features that control the mechanical and the tribological performances of WC–12 wt.% Co coatings under High Velocity Oxygen Fuel (HVOF) spraying conditions. This paper looks at the influences of the HVOF process parameters for WC–12Co material on the microstructural and the tribological behaviours of the coatings. The correlation between the coating microstructure and the wear behaviour is investigated by observing and analysing the microstructure and by studying the friction moment using enhanced statistical tool based on neural computations. According to the experimental and the numerical results, it has been shown that the spray parameters affect the phase composition, hardness and porosity of HVOF sprayed WC–12Co coatings and the correlations with HVOF process parameters are fully predictable in the steady-state regime.  相似文献   

20.
For 6 years, we have developed corrosion resistant coatings to protect steel structures in the marine environment by using a thermal spray technique. This paper summarizes the major developments and results obtained. Such a coating requires primarily impermeability and secondarily homogenous and clean microstructure. In order to make denser and highly corrosion resistant coatings, we selected spray materials and improved fabrication processes. HastelloyC was a suitable material for High Velocity Oxy-Fuel (HVOF) spraying to form corrosion resistant coatings because of its high resistance against thermal oxidation as well as seawater corrosion, especially crevice and pitting corrosion. An inert gas shroud system was attached with a commercial HVOF apparatus and this attachment increased the in-flight velocity of spray particles over 750 m s?1 and simultaneously suppressed oxidation significantly. In addition, some new methods were designed to evaluate the sprayed particle’s state and the coating properties with high accuracy and sensitivity. Thermal energy of in-flight spray particles was revealed by molten fraction of spray particles, determined by quantitative analysis of melted and unmelted particles captured in an agar gel. Through-porosity of the coatings with open porosity below 0.1% was determined by using Inductively Coupled Plasma analysis of dissolved substance from substrate through the penetrating path of the coatings. The coating of HastelloyC nickel base alloy by the HVOF spraying with the gas shroud attachment had zero through-porosity and 0.2 mass% of oxygen content. The laboratory corrosion tests showed that the on-shroud HastelloyC coating was comparable to the bulk material of HastelloyC in terms of corrosion resistance. This coating, formed on steel, demonstrated an excellent protective performance over 10 months in the marine exposure test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号