首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This letter presents a complementary metal oxide semiconductor (CMOS) voltage-controlled oscillator (VCO) with a high-Q inductor in a wafer-level package for the LC-resonator. The on-chip inductor is implemented using the redistribution metal layer of the wafer-level package (WLP), and therefore it is called a WLP inductor. Using the thick passivation and copper metallization, the WLP inductor has high quality-factor (Q-factor). A 2-nH inductor exhibits a Q-factor of 8 at 2 GHz. The center frequency of the VCO is 2.16 GHz with a tuning range of 385 MHz (18%). The minimum phase noise is measured to be -120.2 dBc/Hz at an offset frequency of 600 kHz. The dc power consumed by the VCO-core is 1.87 mW with a supply voltage of 1.7 V and a current of 1.1 mA. The output power with a 50-/spl Omega/ load is -12.5/spl plusmn/1.3 dBm throughout the whole tuning range. From the best of our knowledge, compared with recently published 2-GHz-band 0.35 /spl mu/m CMOS VCOs in the literature, the VCO in this work shows the lowest power consumption and the best figure-of-merit.  相似文献   

2.
An analysis of regenerative dividers predicts the required phase shift or selectivity for proper operation. A divider topology is introduced that employs resonance techniques by means of on-chip spiral inductors to tune out the device capacitances. Configured as two cascaded /spl divide/2 stages, the circuit achieves a frequency range of 2.3 GHz at 40 GHz while consuming 31 mW from a 2.5-V supply.  相似文献   

3.
A broadband microwave/millimeter-wave (MMW) Gilbert-cellmixer using standard 1P8M 0.13-/spl mu/m complementary metal oxide semiconductor (CMOS) technology is presented in this letter. Two radio frequency (RF) transformer baluns are used in RF-and local oscillator (LO)-ports to convert single-ended signals to differential signals. Thin film microstrip line is employed for the matching networks and transformer design. This mixer has a conversion gain of better than 5dB from 9 to 50GHz. Between 5 and 50GHz,the RF- and LO-to-intermediate frequency (IF) isolations are better than 40dB. The RF-to-LO and LO-to-RF isolations are all better than 20dB. To the authors' knowledge, this is the first CMOS Gilbert-cell mixer operating to MMW frequency to date.  相似文献   

4.
An ultra-wideband mixer using standard complementary metal oxide semiconductor (CMOS) technology was first proposed in this paper. This broadband mixer achieves measured conversion gain of 11 /spl plusmn/ 1.5 dB with a bandwidth of 0.3 to 25 GHz. The mixer was fabricated in a commercial 0.18-/spl mu/m CMOS technology and demonstrated the highest frequency and bandwidth of operation. It also presented better gain-bandwidth-product performance compared with that of GaAs-based HBT technologies. The chip area is 0.8 /spl times/ 1 mm/sup 2/.  相似文献   

5.
A low power and low voltage down conversion mixer working at K-band is designed and fabricated in a 0.13/spl mu/m CMOS logic process. The mixer down converts RF signals from 19GHz to 2.7GHz intermediate frequency. The mixer achieves a conversion gain of 1dB, a very low single side band noise figure of 9dB and third order intermodulation point of -2dBm, while consuming 6.9mW power from a 1.2V supply. The 3-dB conversion gain bandwidth is 1.4GHz, which is almost 50% of the IF. This mixer with small frequency re-tuning can be used for ultra-wide band radars operating in the 22-29GHz band.  相似文献   

6.
A frequency synthesizer incorporating one single-sideband (SSB) mixer generates seven bands of clock distributed from 3 to 8GHz with 1-ns switching time. An efficient frequency synthesizing technique producing balanced bands around one center frequency is employed, and the SSB mixer uses double degeneration topology to increase the linearity. Fabricated in 0.18-/spl mu/m CMOS technology, this circuit achieves a sideband rejection of 37 dB while consuming 48 mW from a 2.2-V supply.  相似文献   

7.
High-speed directly modulated diode lasers are important for optical communications and optical interconnects. In this work, we demonstrate greatly enhanced resonance frequency for vertical-cavity surface-emitting lasers, from 7 to 50 GHz, under ultrahigh injection-locking conditions. In addition, a 20-dB gain is achieved for small signal modulation below resonance frequency.  相似文献   

8.
A high frequency millimeter-wave voltage-controlled oscillator (VCO) has been designed, manufactured and tested in InP single heterojunction bipolar transistor technology. The fully integrated fundamental differential VCO features high operating frequency up to 80 GHz with low phase noise about -118 dBc/Hz at 1-MHz offset and 5% tuning range. The VCO consumes only 95-mW power at a power supply of -5 V, while providing -2 dBm single-ended output power and 1 dBm for differential output power. The die size is 0.28 mm/sup 2/.  相似文献   

9.
A dual band, fully integrated, low phase-noise and low-power LC voltage-controlled oscillator (VCO) operating at the 2.4-GHz industrial scientific and medical band and 5.15-GHz unlicensed national information infrastructure band has been demonstrated in an 0.18-/spl mu/m CMOS process. At 1.8-V power supply voltage, the power dissipation is only 5.4mW for a 2.4-GHz band and 8mW for a 5.15-GHz band. The proposed VCO features phase-noise of -135dBc/Hz at 3-MHz offset frequency away from the carrier frequency of 2.74GHz and -126dBc/Hz at 3-MHz offset frequency away from 5.49GHz. The oscillator is tuned from 2.2 to 2.85GHz in the low band (2.4-GHz band) and from 4.4 to 5.7GHz in the high band (5.15-GHz band).  相似文献   

10.
This paper presents the design of three- and nine-stage voltage-controlled ring oscillators that were fabricated in TSMC 0.18-/spl mu/m CMOS technology with oscillation frequencies up to 5.9 GHz. The circuits use a multiple-pass loop architecture and delay stages with cross-coupled FETs to aid in the switching speed and to improve the noise parameters. Measurements show that the oscillators have linear frequency-voltage characteristics over a wide tuning range, with the three- and nine-stage rings resulting in frequency ranges of 5.16-5.93 GHz and 1.1-1.86 GHz, respectively. The measured phase noise of the nine-stage ring oscillator was -105.5 dBc/Hz at a 1-MHz offset from a 1.81-GHz center frequency, whereas the value for the three-stage ring oscillator was simulated to be -99.5 dBc/Hz at a 1-MHz offset from a 5.79-GHz center frequency.  相似文献   

11.
The first demultiplexers on InP at 1.31-1.55 /spl mu/m based on low-order waveguide arrays have been fabricated and characterized. We show the calculated and measured spectral responses of two devices with 6 and 10 waveguides in the grating. The on-chip loss of the devices is 4.5 dB and the crosstalks are down to -25 dB. Thanks to their large bandwidth, the devices are polarization insensitive and no strong influence of the temperature is seen.  相似文献   

12.
This letter presents a fully integrated distributed amplifier in a standard 0.18-/spl mu/m CMOS technology. By employing a nonuniform architecture for the synthetic transmission lines, the proposed distributed amplifier exhibits enhanced performance in terms of gain and bandwidth. Drawing a dc current of 45mA from a 2.2-V supply voltage, the fabricated circuit exhibits 9.5-dB pass-band gain with a bandwidth of 32GHz while maintaining good input and output return losses over the entire frequency band. With a compact layout technique, the chip size of the distributed amplifier including the testing pads is 940/spl times/860/spl mu/m/sup 2/.  相似文献   

13.
A two-stage self-biased cascode power amplifier in 0.18-/spl mu/m CMOS process for Class-1 Bluetooth application is presented. The power amplifier provides 23-dBm output power with a power-added efficiency (PAE) of 42% at 2.4 GHz. It has a small signal gain of 38 dB and a large signal gain of 31 dB at saturation. This is the highest gain reported for a two-stage design in CMOS at the 0.8-2.4-GHz frequency range. A novel self-biasing and bootstrapping technique is presented that relaxes the restriction due to hot carrier degradation in power amplifiers and alleviates the need to use thick-oxide transistors that have poor RF performance compared with the standard transistors available in the same process. The power amplifier shows no performance degradation after ten days of continuous operation under maximum output power at 2.4-V supply. It is demonstrated that a sliding bias technique can be used to both significantly improve the PAE at mid-power range and linearize the power amplifier. By using the sliding bias technique, the PAE at 16 dBm is increased from 6% to 19%, and the gain variation over the entire power range is reduced from 7 to 0.6 dB.  相似文献   

14.
The demand for radio frequency (RF) integrated circuits with reduced power consumption is growing owing to the trend toward system-on-a-chip (SoC) implementations in deep-sub-micron CMOS technologies. The concomitant need for high performance imposes additional challenges for circuit designers. In this paper, a g/sub m/-boosted common-gate low-noise amplifier (CGLNA), differential Colpitts voltage-controlled oscillators (VCO), and a quadrature Colpitts voltage-controlled oscillator (QVCO) are presented as alternatives to the conventional common-source LNA and cross-coupled VCO/QVCO topologies. Specifically, a g/sub m/-boosted common-gate LNA loosens the link between noise factor (i.e., noise match) and input matching (i.e., power match ); consequently, both noise factor and bias current are simultaneously reduced. A transformer-coupled CGLNA is described. Suggested by the functional and topological similarities between amplifiers and oscillators, differential Colpitts VCO and QVCO circuits are presented that relax the start-up requirements and improve both close-in and far-out phase noise compared to conventional Colpitts configurations. Experimental results from a 0.18-/spl mu/m CMOS process validate the g/sub m/-boosting design principle.  相似文献   

15.
This paper presents five-stage and seven-stage traveling-wave amplifiers (TWA) in a 0.12-/spl mu/m SOI CMOS technology. The five-stage TWA has a 4-91-GHz bandpass frequency with a gain of 5 dB. The seven-stage TWA has a 5-86-GHz bandpass frequency with a gain of 9 dB. The seven-stage TWA has a measured 18-GHz noise figure, output 1-dB compression point, and output third-order intercept point of 5.5 dB, 10 dBm, and 15.5 dBm, respectively. The power consumption is 90 and 130 mW for the five-stage and seven-stage TWA, respectively, at a voltage power supply of 2.6 V. The chips occupy an area of less than 0.82 and 1 mm for the five-stage and seven-stage TWA, respectively.  相似文献   

16.
A 43-Gb/s full-rate clock transmitter chip for SONET OC-768 transmission systems is reported. The IC is implemented in a 0.18-/spl mu/m SiGe BiCMOS technology featuring 120 GHz f/sub T/ and 100 GHz f/sub max/ HBTs. It consists of a 4:1 multiplexer, a clock multiplier unit, and a frequency lock detector. The IC features clock jitter generation of 260 fs rms and dissipates 2.3 W from a -3.6-V supply voltage. Measurement results are compared to a previously reported half-rate clock transmitter designed using the same technology.  相似文献   

17.
This paper presents an integrable RF sampling receiver front-end architecture, based on a switched-capacitor (SC) RF sampling downconversion (RFSD) filter, for WLAN applications in a 2.4-GHz band. The RFSD filter test chip is fabricated in a 0.18-/spl mu/m CMOS technology and the measurement results show a successful realization of RF sampling, quadrature downconversion, tunable anti-alias filtering, downconversion to baseband, and decimation of the sampling rate. By changing the input sampling rate, the RFSD filter can be tuned to different RF channels. A maximum input sampling rate of 1072 MS/s has been achieved. A single-phase clock is used for the quadrature downconversion and the bandpass operation is realized by a 23-tap FIR filter. The RFSD filter has an IIP/sub 3/ of +5.5 dBm, a gain of -1 dB, and more than 17 dB rejection of alias bands. The measured image rejection is 59 dB and the sampling clock jitter is 0.64 ps. The test chip consumes 47 mW in the analog part and 40 mW in the digital part. It occupies an area of 1 mm/sup 2/.  相似文献   

18.
A fully integrated 5.8 GHz CMOS L-C tank voltage-controlled oscillator (VCO) using a 0.18-/spl mu/m 1P6M standard CMOS process for 5 GHz U-NII band WLAN application is presented. The VCO core circuit uses only PMOS to pursue a better phase noise performance since it has less 1/f noise than NMOS. The measurement is performed by using a FR-4 PCB test fixture. The output frequency of the VCO is from 5860 to 6026 MHz with a 166 MHz tuning range and the phase noise is -96.9 dBc/Hz at 300 kHz (or -110 dBc/Hz at 1 MHz) with V ctrl = 0 V. The power consumption of the VCO excluding buffer amplifiers is 8.1 mW at V/sub DD/ = 1.8 V and the output power is -4 dBm.  相似文献   

19.
This letter presents a 5.7 GHz 0.18 /spl mu/m CMOS gain-controlled differential LNA for an IEEE 802.11a WLAN application. The differential LNA, fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process, uses a current-reuse technology to increase linear gain and save power consumption. The circuit measurement is performed using an FR-4 PCB test fixture. The LNA exhibits a noise figure of 3.7 dB, linear gain of 12.5 dB, P/sub 1dB/ of -11 dBm, and gain tuning range of 6.9 dB. The power consumption is 14.4 mW at V/sub DD/=1.8 V.  相似文献   

20.
A micro-power complementary metal oxide semiconductor (CMOS) low-noise amplifier (LNA) is presented based on subthreshold MOS operation in the GHz range. The LNA is fabricated in an 0.18-/spl mu/m CMOS process and has a gain of 13.6 dB at 1 GHz while drawing 260 /spl mu/A from a 1-V supply. An unrestrained bias technique, that automatically increases bias currents at high input power levels, is used to raise the input P1dB to -0.2 dBm. The LNA has a measured noise figure of 4.6 dB and an IIP3 of 7.2 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号