首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Oils on rails are present in minute quantities and are found to be complex mixtures containing an unusually high proportion of chemically active compounds. Laboratory experiments are described which study how such oils and related compounds affect friction when present in surface concentrations similar to those found on the track. The friction is sensitive to small changes in the quantities present, and this gives an explanation why adhesion varies on dry rails. All types of fluid give similar results. Simple mixtures can be dominated by an active, low-friction component but the friction of oils appears to be an “average” of their many components. High humidity during specimen preparation promotes lower friction. It is suggested this is due to its effect on the physical properties of the oxide formed on the steel surface.  相似文献   

2.
The boundary lubrication regime plays a very important role in determining the life span of any of the two mating parts under liquid-lubricated conditions. It is during the start\stop cycles when insufficient fluid is available to fully separate the surfaces in relative motion and thus unusual wear takes place; a case of boundary lubrication. The aim of this work is to study the feasibility of using polymer coatings as boundary lubricants. This study investigates the friction and wear properties of ultra-high molecular weight polyethylene (UHMWPE) films coated on aluminium substrates under dry and base oil (without any additives)-lubricated conditions. In order to increase the load bearing capacity of the UHMWPE coatings, 0.1 wt% of single-walled carbon nanotubes are added. Experiments are carried out on a custom-built tribometer simulating a line contact between a polymer-coated cylindrical Al surface (shaft) and a flat uncoated Al plate as the counterface. The experimental parameters such as the normal load and the sliding speed are selected to simulate the boundary and mixed lubrication regimes for comparison purposes. Specific wear rates of the polymer films and bare Al surface under lubricated conditions are also calculated. Stribeck curves have been generated to evaluate the effectiveness of the pristine UHMWPE and the nanocomposite coatings in the various regimes of lubrication, especially the boundary lubrication regime. It is observed that the selected polymer coatings are effective in protecting the metallic surfaces without causing any observable oil contamination with wear debris.  相似文献   

3.
The film-forming properties of a range of polymer solutions have been studied down to very thin film thickness using ultrathin film interferometry.

It has been found that, at very slow rolling speeds, some polymers generate much thicker films than predicted from theory. It appears that these polymers form adsorbed layers between three and 15 nanometers thick on the two solid surfaces. These layers have a viscosity many times higher than that of the bulk solution. Therefore, under slow speed, low film thickness conditions, the contact effectively operates within a viscous boundary layer, generating an elastohydrodynamic-type film much thicker than predicted from the viscosity of the bulk lubricant. As the speed is raised the contact emerges from this boundary layer and reverts to elastohydrodynamic behavior based upon the viscosity of the bulk polymer solution.  相似文献   

4.
This paper analytically investigates the isothermal line contact elastohydrodynamic lubrication of three lubricants with much different shear strengths under the nondimensional operating parameters of w = 2.15e-4 and U = 2.53e-10 applying the lubricant ideal viscoplastic rheological model. The boundary slippage of the low-shear-strength lubricant occurring in the EHL inlet zone was found and results in a much thinner film compared to the classical EHL theory prediction. The film boundary slippage and its growth with the slide/roll ratio variation of tile low-shear\- strength lubricant exhibit special phenomena, which are much different from those of the high-shear-strength lubricant. The easy occurrence of film failure in concentrated contact in the case of high sliding speed, heavy load, large slide/roll ratio, and low-shear-strength lubricant was concluded due to the severe friction heating on the surface conjunction and the lubricant thermal desorption on tile lubricant/surface boundary. The EHL film failure mechanism was further recognized.  相似文献   

5.
Two variants of a refined theory for calculating the stress–strain state in the boundary zones of cylindrical shells are presented. The relevant mathematical models are based on equations of the three-dimensional elasticity theory and the increase over the thickness of the shell in the orders of the polynomials that approximate the sought displacements. The Lagrange variational principle is applied to the value of the shell’s total energy functional defined more exactly with respect to the classical Kirchhoff–Love theory. The formulated boundary problems allow determination with different degrees of accuracy of additional stressed states of the “boundary layer” type. The calculated results obtained in this work are compared with the results obtained according to the classical theory. It has been established that the above stresses make a significant contribution to the total stressed state of the shell and should be considered when designing and testing machine structures for strength and longevity.  相似文献   

6.
Slip and fall accidents cause frequent occupational injuries. Despite recent evidence that boundary lubrication is relevant to slipping, few studies have examined the mechanisms that contribute to shoe?Cfloor friction in this lubrication regime. This study aims to identify the contributions of adhesion and hysteresis to friction in boundary lubrication. Three shoe materials (40 Shore A hardness polyurethane, 60 Shore A hardness rubber, and 70 Shore A hardness rubber), two floor materials (vinyl and marble), and six lubricants (water, 1.5?% detergent, 25?% glycerol?C75?% water, 50?% glycerol?C50?% water, 75?% glycerol?C25?% water, and canola oil) were tested at a single sliding speed (0.01?m?s?1). Dry adhesion and hysteresis were quantified for each of the shoe?Cfloor combinations and lubricated adhesion was quantified for all shoe?Cfloor-fluid combinations. The contribution of adhesion and hysteresis to shoe?Cfloor-lubricant friction was affected by both the shoe and floor material due to differences in hardness and roughness. Lubricated adhesion was complex and multifactorial with contributions from the shoe, fluid, shoe?Cfloor interaction, floor-lubricant interaction, and shoe-lubricant interactions. A simple regression model including two fluid coefficients and the dry adhesion friction force was able to predict 49?% of the lubricated adhesion friction variability.  相似文献   

7.
The present study was conducted to examine the effect of laser surface texturing combined with couple stress fluids on the hydrodynamic lubrication of finite journal bearing in this work. The Jakobsson-Floberg-Olsson (JFO) boundary conditions were engaged instead of Reynolds boundary conditions to achieve realistic results. Moreover, the results were computed and authenticated with the previous published work. It was observed that the load-carrying capacity is increased with couple stresses for smooth journal bearings at different eccentricity ratios. However, the increment in load-carrying capacity with texture affects only at low eccentricity ratios. The combined effects of texturing with couple stress fluids lower the performance of journal bearings at different eccentricity ratios.  相似文献   

8.
Mineral oil formulations with zinc dialkyl dithiophosphate (ZDDP) and dispersant (poly isobutylene succinimide ashless dispersant or ‘PIBSA’) and fully formulated oils with and without carbon black were subjected to thermal and mechanical treatment and tribologically tested on TE 77 (high frequency reciprocating rig or ‘HFRR’) machine to examine the frictional performance during the test. These results were compared to oils without carbon black and oils with diesel soot. Results indicate that oils with just ZDDP and dispersant had the highest friction that remains constant for the duration of the test while oils with carbon black in the milled and oxidised condition had the lowest coefficient of friction and the smallest surface roughness in the tribofilm. The mechanism of wear with treated carbon black and diesel soot was found to be polishing wear as evidenced by the scanning probe microscopy images of the tribofilms. Tribofilms were analysed with X-ray absorption near edge structure (XANES) and it was seen that oils without carbon black or even with untreated carbon black had sulphates at the surface, while the oils with carbon black that were treated had a higher proportion of sulphides. A combination of both FeS and ZnS was found in the tribofilms along with short chain phosphates of Zn.  相似文献   

9.
Wear behaviour of NiTi SMA is closely corresponds to deformation mechanisms associated with different plastic strain accumulation process. Plastic strain accumulation is achieved by dislocation motion; however, grain boundary acts as a strong barrier. In this work, wear behaviour of single-crystalline and polycrystalline NiTi SMAs was studied to understand the effect of grain boundary on the plastic strain accumulation in the wear process. Wear tests were conducted at Mf < T < Af, where phase boundary exists between martensitic and austenitic phases. Tests were conducted under ball-on-disc sliding wear mode, and alumina (Al2O3) counter-body was used. For single-crystalline NiTi SMA, transition wear occurred even when the applied load was relatively low (i.e., 100 mN). For polycrystalline NiTi SMA, with increasing applied load and wear cycles, the wear has shifted from near-zero wear stage to severe wear stage; no transition behaviour was observed. Significant differences in the wear process were discussed with respect to deformation mechanisms associated with dislocation motion in the single-crystalline and polycrystalline NiTi SMAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号