首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ashless substituted dithiophosphoric acid derivatives (ADPs) are a new generation of multifunctional additives with promising antiwear (AW) and extreme‐pressure (EP) characteristics. Three such additives synthesised in the authors' laboratory have been evaluated for their AW and EP properties by standard four‐ball friction and wear tests. The friction‐reducing properties of these additives were compared with those of a commercial zinc dialkyldithiophosphate (ZDDP). It was found that the phosphorodithioate compounds studied here possessed excellent AW/EP properties. Their AW characteristics were found to be comparable to those of ZDDP at low loads. However, at higher loads they show inferior AW characteristics in comparison to ZDDP. Nevertheless, ADP derived from cashew nut shell oil had a higher load‐carrying capacity than ZDDP. The mechanism of the AW and EP behaviour exhibited by the different additives was investigated using X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM) of the worn surfaces formed during friction. XPS and AES analyses of the worn surfaces reveal that the tribochemical film formed on the ADP‐tested surfaces consisted mainly of metal phosphates and only a small amount of metal sulphides, even though the ADPs contained twice the number of sulphur atoms than phosphorus atoms. The ZDDP‐tested surface showed a mixture of metal sulphides and metal phosphates. Alkylamino substitution appeared to have no significant effect on the AW/EP properties of the additive. XPS and AES analyses also revealed that the tribochemical film formed on an ADP‐tested surface was thicker than that present on the ZDDP‐tested surface at low loads, whereas at higher loads the reverse was true. The higher weld load obtained for the blend containing cashew nut shell oil‐derived ADP is attributed to the thicker adsorbed reaction film formed on the surface due to the long alkyl groups present in the original additive structure. Short‐chain alkyl groups, however, form only a thin adsorbed layer, which may get rubbed off during the friction at high load. The low sulphide formation on ADP‐tested surfaces was attributed to the absence of any metal atom in the additive, which would help in the formation of metal sulphides during tribofragmentation and further tribochemical reactions.  相似文献   

2.
The authors of this paper investigated the influence of esters of rapeseed oil fatty acids on the lubricating properties of mineral lubricants containing chosen AW/EP additives. Methyl esters, ethylene glycol esters, and glycerol esters as well as some commercial AW/EP packages based on zinc dialkyldithiophosphate, S–P organic compounds, and sulphurized esters of fatty acids were tested. The tribological tests were carried out with the use of a four-ball machine. Antiwear (AW) properties of tested compositions were determined using their limiting load of wear (Goz(40)). It appears that the AW action of esters of rapeseed oil fatty acids depends on their structure. The best AW action is shown by compositions of mineral oil lubricants containing AW/EP additives and methyl esters of rapeseed oil fatty acids. The SEM/EDS analysis of the scar surface layer indicated that the presence of these esters in lubricants causes a change in the interaction between AW/EP additives and the metal surface. These observations were confirmed by the XPS surface analysis.  相似文献   

3.
复合抗磨修复添加剂的研制及摩擦学性能测试   总被引:2,自引:1,他引:2  
本文复配了几种发动机抗磨修复剂,并利用RFT往复摩擦磨损试验机对各种复配的抗磨修复添加剂与市售的各种发动机抗磨修复剂的抗磨减摩性进行了比较,结果表明,配制的抗磨修复添加剂达到了降低磨擦,减小失重和修复目的,通过扫描电镜对磨斑表面元素的分析发现,目前市场上抗磨修复剂多是以环烷酸铅或油酸铅为主,而本文配制的抗磨修复剂不含铅。  相似文献   

4.
In this paper, the influence of concentration level and chemical composition of three different additive types on friction and wear coefficient are presented for a synthetic ester base fluid and a mineral base oil. One extreme-pressure (EP), two antiwear (AW) and two yellow metal passivator (Cu-passivators) additives were used. Factorial experimental design was used as the basis for a systematic evaluation of wear rates under mixed and boundary lubrication conditions. A total of 33 different lubricant blends were tested in a Plint and Partner High Frequency Friction Machine. For the synthetic ester, the extreme-pressure (EP) additive, containing phosphorus and nitrogen, was found to be much more effective in reducing wear than either of the two antiwear (AW) additives tested. In fact, the AW and Cu-passivator additives made little or no contribution to the wear protection in most of the cases studied. A synergy effect between the three additive combinations was observed only for the reference mineral oil blend. A significant difference between the antiwear performance of the test lubricants was found. This study suggests that the traditional “AW” and “EP” labels associated with commonly used additives are poor aids when designing of ester based lubricants.  相似文献   

5.
Tests were performed on two different four‐ball testers. The first was used to determine antiwear (AW) and extreme pressure (EP) properties at sliding friction. The second was used to assess the surface fatigue (pitting) life at rolling movement. Lubricating oils of various chemical compositions were tested. A base mineral oil was blended with two different commercial packages of lubricating additives of AW and EP types. The AW additives contained ZDDP and were blended with the base oil at 0.2 and 3wt %. The EP additives were organic compounds of sulphur and phosphorus, blended with the base oil at 1 and 10wt %. It is shown that AW additives not only improve AW and EP properties but also — at 0.2% — are beneficial for the fatigue life. An increase in the concentration of AW additives leads to an improvement of AW and EP properties but — for one of the packages — reduces the fatigue life. EP additives — at 1% concentration — significantly improve EP properties, and to a lesser extent AW properties. Such a concentration of EP additives has no influence on the fatigue life. An increase in the concentration of EP additives leads to a further improvement of EP and AW properties. However, this is accompanied by a considerable decrease in the fatigue life. By using a scanning electron microscope and energy dispersive spectrometer for analysis of the worn surface, mechanisms of action of various lubricating additives under different friction conditions were identified. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
利用四球摩擦磨损试验机考察了噻吩及实验室合成的2-烷基硫甲基噻吩对菜籽油摩擦学性能的影响,用X射线光电子能谱仪(XPS)和扫描电子显微镜(SEM)观察分析了磨损表面的形貌和元素存在状态。用差示扫描量热法(DSC)评价了合成添加剂对菜籽油氧化稳定性的影响,结果表明:2-烷基硫甲基噻吩系列化合物大大提高了菜籽油的承载能力,但加剧了钢-钢摩擦副的磨损。含上述添加剂的菜籽油在摩擦副表面发生摩擦化学反应,生成菜籽油和添加剂共同作用所产生的边界润滑膜,从而改变了菜籽油的润滑性能,2-烷基硫甲基噻吩可明显改善菜籽油的抗氧化性能。  相似文献   

7.
The tribological study of N-containing heterocyclic borate esters as lubricating additives had been the research hotspot. In this work, B–N and B–S–N triazine borate esters were synthesized and their antiwear/extreme pressure (AW/EP) properties were studied. Results showed the synthetical additives had good AW performance. However, B–S–N triazine borate ester showed excellent EP property while B–N triazine borate ester hardly owned EP property. The hydrolytic stability of borate ester additives was improved by the formation of coordination of nitrogen to boron. The XANES spectroscopy analysis showed that there was a layer of borate–oxygen–iron inorganics in the tribofilms. The existence of iron sulfate and iron sulfide guaranteed good AW/EP properties of B–S–N triazine borate ester additive in mineral oil.  相似文献   

8.
This paper describes a method for the determination of scuffing propagation using a four‐ball extreme‐pressure tester. The method has been developed at the authors' laboratory and is a completely new approach to the investigation of scuffing phenomena. A series of lubricants was prepared by blending antiwear (AW) and extreme‐pressure (EP) additives with a mineral base oil. Tribological experiments were then performed using the new method. The aim was to investigate the influence of such additives on scuffing propagation. It is shown that there is a significant influence of AW and EP additives on scuffing. Surface analyses (SEM, EDS) show the decisive role of the chemical reactions of AW and EP additives with the steel surface and their creation of a surface layer whose good antiseizure properties mitigate scuffing propagation and reduce wear intensity. It must be emphasised that the authors consider scuffing to be a process leading to the cessation of the relative movement of a tribosystem, known as seizure.  相似文献   

9.
Study of interaction of EP and AW additives with dispersants using XANES   总被引:2,自引:0,他引:2  
The chemical interaction of two kinds of dispersants (bis-succinimide dispersant and borated bis-succinimide dispersant) with four kinds of antiwear (AW) and extreme pressure (EP) additives (zinc dialkyldithiophosphate, dialkyldithiophosphate ester, diphenylphosphate ester and dialkyldithiocarbamate) has been investigated under different contact pressures. The chemical compositions of the tribofilms have been studied by B, N, P and S X-ray absorption near edge structure (XANES) spectroscopy. The N K-edge XANES analysis has been used to follow the reaction pathway of amine and imide functional groups in the dispersants and their interactions with EP and AW additives. It has been found that AW additives react with amine to form amine phosphate at low load. However, at high load, there is a good evidence for the formation of a nitrate phase in the tribofilms, the first direct observation of oxidative dispersant loss in the rubbing contact. On the other hand, EP additives behave differently and in general are less reactive. The B K-edge XANES has been employed to follow the interaction of borated dispersant with the EP and AW additive. In general, boron originally in the trigonal coordination, is converted to a tetrahedral coordination form in the process of tribofilm formation.  相似文献   

10.
噻唑衍生物在菜籽油中的摩擦学性能研究   总被引:1,自引:1,他引:1  
合成了两种噻唑衍生物,采用热重分析对其热稳定性进行了评价;利用四球摩擦磨损试验机考察了其在菜籽油中的摩擦学性能,并用扫描电子显微镜和x射线光电子能谱仪观察分析了磨斑表面的形貌和元素化学状态。结果表明:噻唑氨基甲酸衍生物添加剂可显著改善菜籽油的减摩抗磨性能和承载能力;含上述添加剂的菜籽油在摩擦过程中发生了摩擦化学反应,生成了含菜籽油甘油酯、有机硫化物、硫酸亚铁等组成的边界润滑膜,从而改善了菜籽油的摩擦学性能。  相似文献   

11.
Tribochemistry, the chemistry of interacting surfaces under the influence of a lubricant, helps in the appropriate selection of suitable lubricant additives for specific uses. Modern lubricants are usually formulated from a range of petroleum base oils or synthetic fluids incorporating a variety of chemical additives for performance enhancement. Extreme‐pressure (EP) and anti‐wear (AW) additives are used extensively in lubricants for hypoid gears and metal cutting and forming operations to reduce wear, modify friction, and prevent scuffing of moving metallic parts. The present paper includes the synthesis and the evaluation of the tribological properties of 0.5% (w/v) solutions of some zinc bis‐(alkyl/dialkyl/alkylaryldithiocarbamates) in paraffin oil using 12.7 mm diameter steel bearing ball specimens in four‐ball tests. All the synthesised zinc dithiocarbamate additives in general, and zinc bis‐(morpholinodithio‐carbamate) (A4) in particular, exhibited good AW, EP, and friction‐reducing properties. Additive A4 especially gave low values of wear‐scar diameter and coefficient of friction at higher loads and higher values of load wear index and flash temperature parameter during EP tests (ASTM D 2783) and afforded lower values of wear‐scar diameter in a one‐hour wear test (ASTM D 2266–67). The surface topography of the wear‐scar matrix of the used ball specimens was investigated by scanning electron microscopy.  相似文献   

12.
Lubricants containing additives that protect mechanical components against extreme pressure by reducing friction and wear are known as extreme pressure (EP) lubricants. In the current study, phosphorus-based EP lubricants with different additives (amine phosphate and phosphate ester) were tested in a steel ball-on-disc assembly under different EP conditions. The phosphate ester–steel interaction resulted in significantly higher wear and marginally lower friction than the amine phosphate–steel interaction. The tribological performance (especially wear) depended on the contact conditions. The tribofilm that formed on the steel surface with both EP lubricants consisted of organic compounds, oxides, and phosphates. The greater formation of the wear-resistant iron phosphate for the amine phosphate–steel interaction resulted in lower wear. The friction and wear performance for both EP lubricants depended upon surface roughness parameters along with the compounds that formed in the tribofilm.  相似文献   

13.
《Wear》2002,252(3-4):240-249
The effect of zinc dialkyldithiophosphate (ZDDP) addition on the antiwear (AW) and extreme pressure (EP) properties of molybdenum dialkyldithiocarbamate (MoDTC) and molybdenum dialkyl dithiophosphate (MoDTP) are evaluated by standard Four-Ball friction test and also by the determination of coefficient of friction using an oscillating SRV apparatus. The boundary lubrication film formed on the worn surface using the two molybdenum additives and their combination with ZDDP is investigated by depth profile X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to find out the chemistry of tribochemical reaction occurring at the surface during friction. It is seen that MoDTP possesses better AW properties than MoDTC due to its high reactivity with the metal surface. Nevertheless, the AW characteristics of MoDTC could be improved by the addition of ZDDP. The frictional properties of MoDTP, however, do not change by the addition of ZDDP. The synergistic action of ZDDP on MoDTC is attributed to the enhanced decomposition of MoDTC in presence of ZDDP. This is tentatively explained in terms of some interaction of zinc with the electron donating nitrogen present in MoDTC, which would have helped to increase its tribo-reactivity. XPS studies revealed that in the presence of ZDDP, MoDTC form mainly metal sulphides like MoS2 and FeS under friction. The MoDTP+ZDDP derived surface, on the other hand, produced mainly metal phosphate along with molybdenum oxysulphides and small amount of MoS2 and FeS. The mechanism of action of additives is explained.  相似文献   

14.
New aircraft engines require new lubricants that will function under extreme conditions. Synthetic lubricants such as polyphenyl ethers are being explored as functional fluids in this new area. Although the thermal and oxidative properties of polyphenyl ethers are quite good, the lubricity properties are not outstanding. This paper summarizes research done in our laboratory on lubricity additives for polyphenyl ethers. A number of additives have been found to be effective. In general they contained a hetero atom (phosphorus, halogen, sulfur) incorporated into an organic structure. The trichloroacetoxy functional group in an organometallic structure gave compounds with very high extreme pressure (EP) weld points. Although no pattern has been established for antiwear additives, several additives were found that reduced wear. These were not limited to one chemical class. Some additives gave good EP weld points and also reduced wear, but no one compound was extremely effective in both areas.  相似文献   

15.
Three novel S‐P‐N type triazine derivatives were synthesised, and their structures were analysed through elemental analysis, and their tribological behaviours as additives in rapeseed oil were evaluated using a four‐ball tester. The extreme pressure and antiwear (AW) mechanism was investigated by X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results indicate that the additives possess excellent load‐carrying capacity and AW ability but have some friction‐reducing property only under the low load condition. Based on the results of XPS and SEM analysis, it can be seen that tribochemical reaction occurred between the synthesised compounds and metal surfaces during the sliding process, to form a complex film which has excellent load‐carrying capacity and AW ability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Straight-chain aliphatic hydrocarbons, particularly n-hexadecane, are used as reference fluids in research concerning the AW/EP effectiveness of triboactive additives. It is assumed, however, that under boundary lubrication conditions these apparently non-reactive hydrocarbons might influence the tribochemistry of the additives because aliphatic compounds also undergo chemical reactions. Both the thermochemical and tribochemical oxidation of aliphatic hydrocarbons lead to the formation of triboactive products (e.g. alcohols, aldehydes and carboxylic acids). Interactions of these compounds with rubbing surfaces were examined using GC/MS, XPS and EDS techniques. It has been found that carboxylic acids react with the iron surface generating salts or complex compounds.  相似文献   

17.
Fangkun Zhu  Wenxiu Fan  Airong Wang  Yong Zhu 《Wear》2009,266(1-2):233-238
Two non-phosphorus and ashless 1,3,4-thiadiazole-2-thione derivatives, 5-dodecyldithio-3-phenly-1,3,4-thiadiazole-2-thione (DPTT) and 5-cetyldithio-3-phenyl-1,3,4-thiadiazole-2-thione (DHTT), were synthesized and their tribological behaviors as additives in rapeseed oil (RSO) were evaluated using a four-ball friction and wear tester. Their thermal stabilities and anticorrosive properties were investigated. The results indicate that the additives possess good thermal stabilities, corrosion inhibiting abilities and excellent load-carrying capacities. Moreover, they both have good anti-wear and friction-reducing property at relatively low concentration and under all test loads. The worn surfaces of the steel balls were observed using a scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is supposed that the synthetic additives adsorb and react with the steel surfaces during the rubbing process and generate a surface protective film composed of sulfate, sulfide, iron oxide and organic nitrogen-containing compounds, which accounts for the better tribological behaviors of the base stock containing the synthetic additives as compared with the base stock alone.  相似文献   

18.
Zinc dialkyldithiophosphates (ZDDP) cannot be used as additives in biodegradable lubricants because of their zinc content. In investigating substitutes for ZDDP, dialkyldithiophosphate esters have been synthesised, and their tribological behaviour as additives in rape seed oil has been evaluated using a four‐ball friction and wear tester and compared with that of ZDDP. The results show that these additives have better antiwear properties and load‐carrying capacity than rape seed oil alone. The morphologies and the elemental chemical states on the worn surfaces of the lubricated steel balls of the tester were examined using X‐ray photoelectron spectroscopy and scanning electron microscopy. The tribological mechanism is discussed on the basis of the experimental results.  相似文献   

19.
This paper describes an investigation of lubricating oils under extreme-pressure (EP) conditions in a specially modified four-ball tester. A new test method developed at the Tribology Department of ITeE described in Part I of this paper was used. In this, during a test run, the applied load is increased continuously and the friction torque is measured. A sudden increase in the friction torque indicates the collapse of the lubricating film — where scuffing is initiated. The load at this moment is called the scuffing load. If the load is increased further, it is possible to observe scuffing propagation until seizure occurs, i.e., a defined, maximum friction torque is reached. Thus, scuffing is considered as a process leading to seizure. Using the method, tribological experiments were performed employing various lubricating oils consisting of viscosity-index improvers and antiwear (AW) and extreme-pressure (EP) additives added to a base oil. Mineral and synthetic base oils of different kinematic viscosities were used. The aim was to investigate the influence of such lubricants on scuffing initiation and propagation with the present methodology. In Part I it was shown that scuffing initiation depends strongly on the kinematic viscosity of the lubricant; the higher the viscosity, the greater the scuffing load. The presence of AW and EP additives in the lubricant increases the scuffing load significantly. It was also shown that the kinematic viscosity of the lubricant oils has no effect on scuffing propagation. However, scuffing propagation is significantly mitigated by AW and, to a greater extent, by EP additives. The results of surface analyses show the decisive nature of the chemical reactions of AW and EP additives with the steel ball surface under scuffing conditions, as well as the possible diffusion of sulphur and phosphorus. Chemical reactions and diffusion lead to the creation of an inorganic surface layer (probably iron sulphide), the good anti-seizure properties of which limit scuffing propagation.  相似文献   

20.
This paper examines the friction and antiwear (AW) properties using SRV (Schwing–Reib–Verschleiss) tribometer and film-forming properties using atomic force microscope (AFM) of one simple model formulation containing solely AW additive and seven oils containing mixture of additives including three zinc-based packages (ZP), ZP with additional AW additives, ZP with extreme pressure (EP) additives, ZP with viscosity index improvers (VII) and one zinc-free ashless package in steel/steel contacts. VII-containing oil show lower boundary and mixed friction coefficients than the other oils. Although all AW additive-containing oils formed tribofilms, AW properties of ZPs appear to be affected antagonistically by EP additives while synergistically by VII. Zn-free additives investigated in this study show higher wear than ZPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号