首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锥形挤压油膜阻尼器转子系统的动力特性   总被引:1,自引:0,他引:1  
锥形挤压油膜阻尼器是为了克服传统挤压油膜阻尼器动力特性难以进行控制而提出的一种改进结构。本文从试验上研究了支承在锥形挤压油膜阻尼器上的刚性及柔性转子系统的振动特性,主要分析了转子的不平衡量及阻尼器的径向间隙比对转子系统不平衡响应的影响  相似文献   

2.
通过对以窄阻尼器为代表的普通型挤压油膜阻尼器 (SFD)和以四油腔垫式阻尼器为代表的静压型挤压油膜阻尼器 (HSFD)的动力学参数的对比分析 ,获得了两种阻尼器的刚度和阻尼特性。结果表明 ,相对于纯阻尼器 SFD,HSFD在许多方面具有优越性  相似文献   

3.
    
Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed.  相似文献   

4.
研究了滑动轴承转子系统和挤压油膜阻尼器 -滑动轴承 -刚性转子系统的稳定性及分岔行为。研究结果表明 :挤压油膜阻尼器的引入 ,可以有效地抑制系统的振动 ,提高系统的运动稳定性  相似文献   

5.
NOTATIONSa———HalflengthofstaticpressureregionC———Radiusclearancee———Ecentricdistanceε———Ecentricratio,ε=e/CL———Bearinglengthθ...  相似文献   

6.
Numerical solution of the Reynolds equation imposes a prohibitive computational cost on the dynamic analysis of practical squeeze film damped turbomachinery. To surmount this problem, the present paper develops the use of Chebyshev polynomial fits to identify finite difference (FD) solution of the incompressible Reynolds equation. The proposed method manipulates the Reynolds equation to allow efficient and accurate identification in the presence of cavitation, the feed-groove, feed-ports, end-plate seals and supply pressure. The ability of Chebyshev polynomials to rapidly reproduce FD routines is demonstrated. The bearing models developed are experimentally proven to give more accurate results than alternative analytical bearing models.  相似文献   

7.
挤压式磁流变液阻尼器--转子系统的动力学特性与控制   总被引:8,自引:3,他引:8  
用磁流变液代替常规挤压油膜阻尼器的润滑油,可制成阻尼特性受磁场控制的挤压油膜阻尼器,用于转子系统的振动控制。依据Bingham模型推导了磁流变液挤压油膜的雷诺方程及其解的表达式,给出了油膜流速、压力分布、油膜反力和阻尼器内磁拉力等的计算公式;以磁流变液阻尼器—刚性转子系统为例,理论分析了挤压油膜的力学特性和转子系统的不平衡响应特性;设计和制造了一种用于转子振动控制的挤压式磁流变液阻尼器;试验研究了支承在该阻尼器上的单盘偏置柔性转子系统的不平衡响应特性和控制方法。研究表明,磁拉力可降低一阶临界转速和临界振幅;油膜反力可降低转子系统在无阻尼临界转速处的振幅,并使一阶有阻尼临界转速增大;通过开关控制能使阻尼器具有最佳的减振效果,使转子振幅在全转速区达到最小。  相似文献   

8.
挤压油膜阻尼器-转子系统碰磨分叉的参数特性研究   总被引:1,自引:1,他引:0  
张韬  孟光 《机械强度》2003,25(2):126-129,143
研究支承在挤压油膜阻尼器上的单盘转子系统的碰磨故障的分叉响应特性。详细分析系统各参数对系统非线性响应特性的影响。发现系统参数具有很强的耦合特性,这种特性使系统响应呈现更加复杂的运动状态,转速比对系统响应的影响很大,但系统如果保持在一定的转速比区间内,系统依然可以保持稳定的周期状态,不平衡参数对系统响应的影响较大,而挤压油膜阻尼器对系统有很好的减振作用,尤其是在高转速区效果更加明显,取较大的碰磨摩擦因数,可以使系统响应处于周期响应区。  相似文献   

9.
Direct and cross-coupled damping coefficients are developed for the 2π-film, π-film (Gumbel cavitation condition) and homogeneous two-phase mixture films in a squeeze film damper. The numerical simulation uses the CFD-ACE+ commercial software, which employs a finite volume method for the discretization of the Navier-Stokes equations (NSE). In order to determine the dynamic coefficients, the NSE is combined with a finite perturbation method applied to the ‘equivalent journal’ of the damper. It was found that for the 2π-film and the Gumbel conditions, the damping coefficients exhibit linear characteristics, while the homogeneous cavitation model yields nonlinear coefficients. Using the CFD-ACE+, the inertia/added mass coefficients are derived for the limiting cases of the short and long dampers, respectively. The first set of forces is calculated by setting the fluid density to its actual value. The second set of forces is calculated when the density of the fluid is set close to zero (1E-10 kg/m3), thus practically eliminating the effects of the inertia terms. Subtracting the two sets of forces from each other, allows the determination of the inertia component contribution and the corresponding inertia coefficients. By varying the density, dynamic viscosity and whirling speed, it was found that the inertia coefficients follow a single curve represented by a function dependent on the modified Reynolds number, Re*. The inertia coefficients presented in this study are compared with the ones reported by other researchers that used the modified Reynolds equation. Some differences were found between the NSE based results and the Reynolds equation based outcomes. This is attributed to the three-dimensional effects introduced by the totality of the terms comprised in the full NSE.  相似文献   

10.
The paper describes a large load squeeze film damper (SFD) test rig, details measurements of dynamic loads inducing circular orbits conducted on a large clearance (c=0.250 mm) open ends centrally grooved SFD, and presents the identified experimental SFD force coefficients for operation at three static eccentricities. The rig has a bearing cartridge supported atop four elastic rods and a stationary journal, 0.127 mm in diameter. The damper consists of two parallel film lands, 12.7 mm in length, separated by a central groove, 6.35 mm 9.5 mm in depth. In the journal, three equally spaced holes, 120° apart, supply a light lubricant into the central groove and squeeze film lands. The experimental SFD force coefficients are compared to test results obtained earlier for a damper with the same film land lengths but with a smaller clearance (c=0.140 mm) and against predictions obtained from an advanced physical model that accounts for the flow field in the central groove and the interaction with the adjacent film lands. Dynamic pressures in the film lands and in the central groove are (not) surprisingly of the same order of magnitude. The central groove affects the dynamic forced response of the test damper to generate large direct damping coefficients, ~3.5 times those derived from classical lubrication formulas. Experimental added mass coefficients are ~7.4 times the predictive classical values. Predictions from an advanced model correlate well with the test data when using a shallow groove depth. The measurements and analysis advance knowledge on the dynamic forced performance of SFDs, point out to the limited value of simplistic predictive formulas, and validate the accuracy of a modern predictive tool.  相似文献   

11.
The permanent magnetic bearing and the small-sized hydrodynamic spiral groove bearing are utilized as supports for the rotor of the energy storage flywheel system. The hydrodynamic bearing and the squeeze film damper do not need the oil cycle to remove the heat caused by friction because the friction loss is small. The linear dynamics model with four degrees of freedom is built to describe the vibration of the flywheel rotor-bearing system. The squeeze film dampers show good behavior in suppressing the vibration and improving the stability of the rotor-bearing system. The analytical solution of the dynamic characteristic coefficients of the squeeze film is achieved from Reynolds equation after some simplifications are taken. The numerical computation shows that the moment unbalance excites larger vibration of the rotor than the force unbalance. The upper damper plays an important role in helping the rotor pass its critical speed. The damping coefficient of the squeeze film dampers should be selected carefully. The flywheel arrived at the speed of 39,000 rpm and stored the energy of 308 Wh in the experiment. The calculated unbalance response is compared to the test response of the rotor storing quantities of kinetic energy. The comparison indicates that the dynamics model of the rotor-bearing-damper system is appropriate.  相似文献   

12.
Experimental vibration responses of squeeze film dampers (SFDs) are obtained with four different central groove depths, two types of lubricant and various unbalance levels. Highly non-linear fluid stiffness and damping are observed, the damping being sensitively related to oil viscosity and unbalance. Existing oil film models are applied to predict the SFD behaviour. A special groove-two land model is able to predict the vibration behaviour of a very shallow grooved SFD and the conventional two-land theory is applicable to a SFD with a very deep groove. These observations provide useful guidelines for designing a shallow or deep grooved SFD-rotor assembly.  相似文献   

13.
Of recent years, a series of researches have shown that a circumferential feeding groove of squeeze film damper (SFD) has evident effect on fluid film forces in SFD. Therefore, the feeding groove also affects dynamic responses of a rotor in SFD. Present work studies the effect of the feeding groove on unbalance response of a flexible rotor in SFD based on new film force models that include effects of the feeding groove and fluid inertia on dynamic characteristics of the fluid film in SFD. Compared with the published work, unbalance responses predicated under considering effect of the feeding groove on the dynamic characteristics in SFD are small, and rotor speed region for unbalance responses with multiple solutions is different, affecting the stability of a rotor system. And the effect of the feeding groove on the unbalance response is related to action of fluid inertia.  相似文献   

14.
    
The dynamics of an unbalanced rigid rotor on squeeze film dampers with two-lobe wave bearings was examined by means of a bifurcation analysis based on numerical continuation and on the assumption of the rotor speed as bifurcation parameter. Further parameters in the study were the angular orientation of the bearing, the wave amplitude of the bearing profile and the gravity residual, while single values were given to the static unbalance and the characteristic bearing parameter. The analysis was necessarily restricted, owing to the multiplicity of quantities that affect the system dynamics. Yet, the obtained results put in evidence the way the two-lobe wave geometry influences the bifurcating behaviour of the system, modifying the length of some unstable branches and the whirling periodicity.  相似文献   

15.
应用油膜力数据库方法获得非线性油膜力 ,采用非线性动力系统的稳定性及分叉理论对非线性挤压油膜阻尼器 转子系统非线性动力特性、非协调运动及周期解分叉的稳定性进行了分析。揭示了SFD 转子系统在特定参数范围内存在系统亚谐波、概周期和混沌等非协调运动 ,及从同步周期运动分叉发生一系列倍周期运动、最后导致转子 轴承系统混沌运动的过程。数值计算得到了SFD 转子系统发生周期解分叉时的分叉点、分叉图及周期解分叉而失稳的 3种情况 :即鞍结分叉、Hopf分叉及倍周期分叉。最后采用Floquet理论对SFD 转子系统的稳定性进行了分析。研究结果为实际SFD 转子系统的设计和研究提供了理论依据。  相似文献   

16.
通过求解考虑油膜惯性力转子-挤压油膜阻尼器系统的微分方程,得到了系统稳态圆响应的频响特性曲线、骨架曲线和传递率曲线,并比较了油膜惯性力对于系统稳态响应的影响。分析证明:油膜惯性力使系统的等效刚度系数与阻尼系数产生较大的变化,并使系统的共振峰值得到抑制,系统参数对稳态响应有较大的影响。  相似文献   

17.
夏南  孟光 《机械强度》2002,24(2):216-224,231
简要介绍挤压油膜阻尼器轴承及其基本分类,介绍各种挤压油膜阻尼器轴承的动力学特性研究和建立阻尼器流体动力模型与挤压油膜力的进展情况,总结了支承在挤压油膜阻尼器轴承上的旋转机械转子系统的动态响应特性和稳定性的研究结果及对这类强非线性的转子-阻尼器支承系统的非线性响应特性研究的进展情况,并对该类减振结构的未来发展进行了展望。  相似文献   

18.
定心型挤压油膜阻尼器在航空发动机中的减振效应   总被引:4,自引:1,他引:4  
以某型具有定心型挤压油膜阻尼器(SqueezeFilmDamper,SFD)和锥齿轮啮合的发动机转子系统为对象,研究了定心型SFD对发动机转子系统的减振作用,提出了分析SFD对发动机减振作用应包含的内容和分析方法。同时,在支承刚度对该机减振效应有影响方面也进行了讨论。  相似文献   

19.
采用液膜阻尼技术研究精密孔的加工,按照达朗贝尔原理建立了液膜阻尼砂轮主轴运动微分方程,对挤压液膜阻尼器作用下的砂轮主轴中心运动轨迹进行了仿真,基于仿真结果设计了带挤压液膜阻尼器的内圆磨床砂轮主轴并进行了磨削试验。试验结果表明,设计合理的挤压液膜阻尼器对砂轮主轴具有优良的减振作用,可使砂轮主轴的振动减小30%~45%、精密孔的加工质量提高10%~20%、机床的工作效率提高15%~25%,在机械加工领域具有十分重要的研究价值和广阔的应用前景。  相似文献   

20.
We study numerically the hydromagnetic squeeze film between two rotating disks using the numerical network simulation method. The external magnetic field, H, generates an induced magnetic field, B, with radial (Br), tangential (Bθ) and axial (Bz) components between the two disks, which rotate with different angular velocities, Ω1 and Ω2, and at time t are separated by a distance D(1−αt)1/2. The applied magnetic field at the lower disk is assumed to be zero. The conservation equations for mass, momentum and induced magnetic field are reduced to a set of ordinary differential equations using a series of transformations, in terms of four dependent variables, f (axial velocity), g (azimuthal velocity), m (axial magnetic field component) and n (azimuthal magnetic field component) and a single independent variable, η (dimensionless disk separation), with appropriate boundary conditions. The transformed ordinary differential equations have collective order of 10 and are shown to be controlled by rotational Reynolds number (R1), squeeze Reynolds number (R2=Rem/Bt), dimensionless parameter based on the magnetic force in the axial direction (R3), dimensionless parameter based on magnetic force strength in the azimuthal (tangential) direction (R4), magnetic Reynolds number (Rem), disk rotational velocity ratio (S) and Batchelor number (Bt). In the present study we examine the flow regime at various Batchelor numbers (for the case of unity value of the squeeze Reynolds number, Rem=Bt). Excellent comparison of NSM solutions is achieved with earlier analytical and shooting solutions. The present study finds applications in hydromagnetic lubrication of braking devices, slider bearings, rotating machinery, etc. Applications also arise in hydraulic shock absorbers employing electrically conducting liquids such as sodium where electro-magnetical braking of streams can be achieved in liquid metal cooled nuclear reactors for arresting control rods. Finally in the context of astronautical vehicles, the present study has applications in electromagnetic braking for potential spacecraft in planetary orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号