共查询到20条相似文献,搜索用时 78 毫秒
1.
AbstractIn this work, Al-20Si-5Fe-2Ni/ZrB2 composites with 0–20?wt% ZrB2 were fabricated by spark plasma sintering. The effects of ZrB2 content on the microstructure, mechanical properties and high-temperature tribological behavior of the composites were investigated. The results indicate that Si, Al5FeSi, and ZrB2 particles are uniformly distributed in the aluminum matrix. The density, hardness, and compressive strength increase with increasing ZrB2 content. The friction coefficient and wear rate are dependent on the ZrB2 content and test temperature. At a certain temperature, the friction coefficient increases with an increase in ZrB2 content, whereas the wear rate shows a reverse trend. Due to the improvement in thermal stability and high-temperature softening resistance, the composite shows improved wear resistance and increased transition temperature from mild wear to severe wear. 相似文献
2.
锡青铜-钢背双金属固体自润滑复合材料的摩擦性能研究 总被引:1,自引:0,他引:1
采用粉末冶金工艺制备含石墨固体润滑剂的锡青铜-钢背复合材料,研究了石墨含量对材料的硬度、显微组织和摩擦磨损性能的影响,并考察了摩擦磨损机制。结果表明:在含石墨的青铜-钢背双金属材料中,随着石墨含量的增加,材料的硬度逐渐降低,摩擦磨损性能逐渐改善,但是其显微组织的均匀性也逐渐变差;在石墨含量为3%~5%(质量分数)时,双金属材料既具有较好的摩擦磨损性能,同时表面铜合金层与钢背的黏结强度也很高;随着速度和负荷的增加,材料的摩擦因数降低,磨损增加;摩擦过程中,石墨在摩擦面上成膜是材料具有减摩自润滑性能的主要原因。 相似文献
3.
研究了MoS2填充量对高岭土基矿物聚合物复合材料的力学性能和摩擦磨损性能的影响,利用XRD、SEM分析了材料的微观结构和磨损表面形貌。结果表明,填充MoS2后矿物聚合物材料的力学性能会有一定程度的降低,但其摩擦磨损性能可以得到有效改善,当MoS2体积分数为30%时,摩擦因数和磨损率均达到最低,分别为0.423和1.23×10-4mm3/(N.m)。研究发现,当二硫化钼含量较低时,磨损机制主要是磨粒磨损;当二硫化钼含量较高时,磨损机制是磨粒磨损和粘着磨损。 相似文献
4.
This article analyzes the influence of graphite reinforcement, load, sliding speed, and sliding distance on tribological behavior of A356 aluminum matrix composites reinforced with silicon carbide and graphite using the full-factorial design. The wear rates of A356/10SiC composite material and A356/10SiC/1Gr and A356/10SiC/3Gr hybrid composites have been analyzed. The composites were obtained by a modified compocasting procedure. Tribological tests were performed on a block-on-disc tribometer without lubrication. The testing included sliding speeds of 0.25 and 1.0 m/s, normal loads of 10 and 20 N, and sliding distances of 300 and 900 m. The analysis of the obtained results was performed using the full-factorial method based on the signal-to-noise (S/N) ratio. The effects of load, sliding speed, weight percentage of graphite reinforcement, and sliding distance on the wear rate are 38.99, 17.87, 13.95, and 11.25%, respectively. The best tribological characteristics were exhibited by the A356/10SiC/1Gr hybrid aluminum composite. 相似文献
5.
6.
Jose Daniel B. de Mello Karyne C. Juste Philippe Kapsa Cristiano Binder Aloisio N. Klein 《摩擦学汇刊》2018,61(3):560-568
Recently, we presented the tribological evaluation of self-lubricating sintered steels produced by taking advantage of the powder injection molding process, the recently introduced plasma-assisted debinding and sintering process, and the in situ formation of solid lubricant particles. This new processing route promotes the in situ generation of nanostructured turbostratic graphite particles during silicon carbide dissociation. In this work, we present the influence of surface finishing on the tribological behavior of self-lubricating composites sintered at 1150°C with (3 and 5 wt%) and without SiC additions. We discuss the effects of the surface topography (Ra) on the friction coefficient and wear rates of specimens and counterbodies. The tribological behavior was analyzed using linear reciprocating sliding tests (constant load of 7 N, 60-min duration). It was shown that the reduction in surface roughness increased both the friction coefficients and wear rates of specimens and counterbodies, probably due to plastic deformation and consequent graphite reservoir sealing. Chemical analyses of the wear scars using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed a tribolayer that was composed predominantly of carbon and oxygen. Analyses of the wear scars showed traces of plastic deformation on both samples and counterbodies and the predominance of abrasion as the main wear mechanism. 相似文献
7.
Silver–copper/molybdenum disulfide (Ag-Cu/MoS2) composites, prepared by powder metallurgy and hot press sintering, were extruded at a temperature of 680°C with extrusion ratios of 10 and 70. Mechanical tests and tribotests were carried on both the hot-pressed and hot-extruded composites. The tribological properties of the composites against a silver coin disc were investigated on a pin-on-disc tester with normal load and sliding speed of 5 N and 0.27 m/s, respectively. The microstructure, wear morphology, and cross section of the worn subsurface were observed by scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses were performed on the worn surfaces of Ag-Cu/MoS2 composites. The results indicated that the distribution of the MoS2 particles in the composites was improved and the interfacial strength of Ag/MoS2 was enhanced during the process of hot extrusion. The hardness, bending strength, and wear resistance of hot-extruded composites increased remarkably due to the presence of the continuous matrix skeleton and the stronger interfacial bonding of Ag/MoS2. XPS revealed that a chemical reaction had occurred at the worn surface due to the friction heat. Although the dominant wear mechanism was fatigue wear for both the hot-pressed and hot-extruded composites, finer debris and a lower wear rate were observed in hot-extruded composites due to the fact that the nucleation and growth of cracks in the worn subsurface were restrained in the process of tribotest. 相似文献
8.
粉煤灰空心微珠具有空心圆球结构,将其用于充填树脂基复合材料,可减少树脂用量、提升复合材料性能,同时促进粉煤灰排放废弃物的高附加值利用。采用不同粒径的粉煤灰空心微珠充填树脂基复合材料,研究不同粒径的粉煤灰空心微珠对复合材料密度、力学性能和摩擦磨损性能的影响。结果表明:随着粉煤灰空心微珠粒径的减小,复合材料的密度呈先降低后增加的趋势,硬度和冲击强度呈先增加后减少的趋势;粉煤灰空心微珠粒径为120~140目时,复合材料密度最小,粒径小的空心微珠更有利于降低复合材料的密度;粒径为80~100目时,复合材料冲击强度最大;采用较大粒径粉煤灰空心微珠充填树脂基复合材料,更有利于提高复合材料的高温摩擦因数,改善树脂基复合材料的抗热衰退性能;粒径20~40目和60~80目粉煤灰空心微珠复合材料具有良好的综合摩擦磨损性能。 相似文献
9.
基于UHMWPE/纳米ZnO复合材料的滑动摩擦磨损机制 总被引:1,自引:0,他引:1
用热压成型法制备了超高分子量聚乙烯(UHMWPE)纳/米ZnO复合材料,采用销盘式摩擦磨损试验机考察了载荷和相对滑动线速度对复合材料摩擦学性能的影响;采用扫描电子显微镜观察了复合材料磨损表面形貌。结果表明:在低载荷试验条件下磨损机制为粘着磨损,在高载荷试验条件下磨损机制为粘着磨损和疲劳磨损。而在一定载荷试验条件下,无论相对滑动线速度高或低,复合材料的磨损机制主要表现为粘着磨损,只是在高速情况下粘着磨损程度加大,局部还出现了表面撕裂的痕迹。 相似文献
10.
11.
The different microstructures of silver–copper/molybdenum disulfide (Ag-Cu/MoS2) composites were manufactured by hot press and hot extrusion processes to investigate the electrical tribological behaviors of both the hot-pressed and hot-extruded composites under air and vacuum. The results showed that microstructures and properties of Ag-Cu/MoS2 composites were improved by hot extrusion, which decreased the wear rates rapidly in both air and vacuum. In air, hot extrusion could improve the transfer layer and tribofilm, resulting in a significant decrease in contact voltage drop, which goes from more than 70 mV in the hot-pressed composite to 30 mV at the hot-extruded composite. Under vacuum condition, some wear debris was melted on the worn surface and then transferred to the counterface to form the transfer layers, which led to the lower contact voltage drops under vacuum, about 6 mV in hot-pressed composites and 3 mV in hot-extruded composites. In addition, the severe adhesive and abrasive wear were attributed to the molten wear debris and transfer layer, resulting in a dramatic fluctuation in the friction coefficient in a vacuum. 相似文献
12.
铜对高硼铁基轴承材料组织及摩擦学特性的影响 总被引:1,自引:0,他引:1
采用粉末冶金压制烧结工艺制备了含铜量不同的高硼铁基自润滑轴承复合材料,并在HDM20型端面摩擦磨损试验机上对其进行了验证试验,利用X射线衍射仪、扫描电镜和能谱分析仪分析了铜对高硼铁基烧结轴承材料组织结构、摩擦磨损特性的影响及作用机理。结果表明:铁基烧结轴承材料内部形成的硼化物会使基体结合强度变差,劣化其力学及摩擦学特性;而铜能在高硼铁基复合材料中形成合金相,起到黏结作用,铜的质量分数为20%时材料内部组织的结合强度、密度及硬度协调适宜,综合摩擦学性能优良。 相似文献
13.
采用一步水热法合成一种新型的纳米二硫化钼包覆的碳纤维抗磨填料CF-MoS2纤维杂化体,将不同接枝量的纤维杂化体作为增强剂,制备一系列以聚四氟乙烯基体的复合材料;对复合材料的结晶结构、热性能、微观结构进行了表征,并讨论其摩擦学行为和相应的磨损机制。结果表明:与未处理的碳纤维相比,制备的纤维杂化体有更大的比表面积和表面粗糙度,相比传统润滑相和增强相的二元复合填料,纤维杂化体与基体的界面结合力更强;相应的具有最佳综合性能的复合材料与纯聚四氟乙烯基体相比,最初分解温度和最快分解温度分别提高了8.4和8.0 ℃,拉伸强度和断裂伸长率分别提升了20.8%和24.9%,摩擦因数在常温和200 ℃下分别下降了8.2%和25.2%,磨损率也降低了2个数量级,这主要源于杂化体中MoS2 和CF之间的协同增强效应。 相似文献
14.
15.
水润滑下偶件表面粗糙度对PTFE复合材料摩擦学性能的影响 总被引:5,自引:0,他引:5
通过水润滑下的摩擦磨损实验,研究了偶件表面粗糙度对MoS2/PTFE复合材料摩擦学性能的影响,分析了在不同的偶件表面粗糙度下的摩擦学行为.实验结果表明:在水润滑下,一般存在着一个较佳的偶件表面粗糙度范围,在这个范围内可以取得较低的摩擦因数和磨损率;当偶件表面粗糙度高于这个范围时,摩擦磨损机制主要是机械作用;而当偶件表面粗糙度低于这个范围时,则主要是由于分子作用导致摩擦磨损.即当偶件表面粗糙度超出某一范围时,摩擦磨损行为将发生转变. 相似文献
16.
食品机械加工中的摩擦磨损直接影响着食品安全问题。选用黄豆与316L不锈钢进行配副,采用滑动摩擦磨损试验机,研究干摩擦和水润滑条件对其摩擦学性能的影响。利用光学显微镜、光学三维形貌仪和红外光谱仪对试样的表面形貌、粗糙度和磨损表面成分进行了分析。结果表明:干摩擦条件下,黄豆/316L不锈钢摩擦副的平均摩擦因数波动较小,约为0.24,水润滑条件下其平均摩擦因数达到干摩擦条件下的4.4倍左右,且在摩擦过程中存在反复波动;与干摩擦相比,水润滑条件下不锈钢试样表面的磨痕宽度提高约10%,而黄豆试样表面的磨痕宽度的增加幅度约高达160%;水润滑摩擦过程中不锈钢磨痕表面产生更多黄豆分解的有机物,其磨痕表面的犁沟数量和深度均显著减少,黄豆试样磨痕表面基本没有犁沟;干摩擦条件下黄豆/不锈钢的磨损机制以磨粒磨损为主,而水润滑条件下,黏着磨损显著增加。 相似文献
17.
This article aims to study the friction and wear behavior of Ti3Al2.5V alloy sliding against EN-31 steel under dry condition using a multi-tribotester. The effect of variation in load and sliding velocity on wear rate, average coefficient of friction, and contact temperature has been studied and analysis of wear debris has been carried out. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were employed to study the morphology of the wear tracks and deduce microchemical information at the elemental level of worn samples, respectively. Results reveal that the wear rate of Ti-3Al-2.5V increases with increasing sliding velocity and increasing normal load with few exceptions. The average coefficient of friction decreases as the normal load increases with exceptions at some loads. SEM micrographs of worn samples obtained at different loads and sliding velocities show the formation of wear tracks on the surface due to ploughing and flaking of the matrix. The main mechanism responsible for wear of Ti3Al2.5V alloy sample is rupture of the matrix and abrasion. Wear debris analysis shows irregular-shaped wear particles with very sharp edges that appeared to be plastically deformed at high sliding velocity, whereas the wear debris is very loose and fine at lowest sliding velocity. 相似文献
18.
19.
填料种类对聚苯酯基复合材料摩擦学性能的影响 总被引:1,自引:0,他引:1
在聚苯酯(Ekonol)中分别添加不同种类的填料,制备出一系列性能不同的Ekonol基复合材料,研究了填料的形态、性质对Ekonol复合材料摩擦磨损性能的影响,分析了磨损面、对磨面转移膜形貌,并探讨了摩擦磨损机制。结果表明,在填料的填充量相同时,层状固体润滑剂聚四氟乙烯(PTFE),由于从本质上改善了非熔融Ekonol的内部粘结,且协助形成较为连续、平滑的转移膜,对Ekonol摩擦学性能的改善最为明显;其次为纤维状填料。相比于尺寸细微的六钛酸钾晶须,粗大的玻璃纤维(GF)或碳纤维(CF)之间相互交错,对Ekonol起到了较好的承载骨架作用,更为有效提高Ekonol的摩擦学性能。GF比CF与Ekonol之间的亲和性较好,对应于GF/Ekonol复合材料的摩擦学性能优于CF/Ekonol复合材料;纳米颗粒填料对Ekonol有着弥散增强作用,但对Ekonol摩擦学性能的改善效果最差。 相似文献
20.
有机钼复合润滑剂在高温微动和滑动条件下的摩擦磨损行为 总被引:1,自引:0,他引:1
以矿物基650SN油作为基础油,采用复配技术制备了有机钼复合润滑剂。利用SRV微动磨损试验机和T-11滑动磨损试验机考察了该复合剂的高温摩擦学行为,采用扫描电子显微镜和X射线光电子能谱仪对其润滑下的磨痕表面形貌和表面膜的元素组成进行了分析,探讨了复合剂的减摩润滑机制。结果表明:有机钼复合剂具有良好的高温微动和滑动摩擦学行为,与基础油相比,复合剂能够使钢-钢摩擦副在高温微动和滑动过程中的摩擦因数降低28%和43%,抵抗微动和滑动磨损的能力分别提高53%和54%。这是由于有机钼复合剂通过分解、吸附和摩擦化学反应,在摩擦副金属表面形成了含磷酸盐的沉积膜和含FeS、MoS2的化学反应膜共同组成的复合边界润滑膜,从而表现出优良的减摩润滑效果。 相似文献