首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium and its alloys are well known as the typical different-to-cut materials because of their low thermal conductivity, high chemical reactivity, and low modulus of elasticity. During machining of titanium alloy, advanced high-speed, high-efficiency processing technologies are adopted to improve the production efficiency and reduce the production costs. The main goal of this work is to compare the performance of physical vapor deposition (PVD)-coated (TiN/TiAlN) and chemical vapor deposition (CVD)-coated (TiN/Al2O3/TiCN) carbide inserts in face milling TC6 alloy. To this end, the present paper reviewed the main works on the application of PVD- and CVD-coated tools in machining titanium alloys and the material performance of TC6 alloy, especially the machinability in machining process. Several tool life tests and tool wear experiments were carried out on a milling center with a five-axis spindle drive. Cutting forces were measured with a Kistler dynamometer. The failure modes and chip morphology were observed. Surface roughness and tool wear evolution were determined. The wear mechanism was discussed to compare the performance of PVD and CVD-coated tools. The main conclusions of this work were that the cutting tools made with PVD coating (TiN/TiAlN) had the excellent tooling quality and the main wear mechanisms were spalling and adhesion. PVD-TiN/TiAlN insert was more suitable to milling TC6 alloy than CVD-TiN/Al2O3/TiCN insert.  相似文献   

2.
Machining of hard materials has become a great challenge for several decades. One of the problems in this machining process is early tool wear, and this affects the machinability of hard materials. In order to increase machinability, cutting tools are widely coated with nanostructured physical vapor deposition hard coatings. The main characteristics of such advanced hard coatings are high microhardness and toughness as well as good adhesion to the substrate. In this paper, the influence of hard coatings (nanolayer AlTiN/TiN, multilayer nanocomposite TiAlSiN/TiSiN/TiAlN, and commercially available TiN/TiAlN) and cutting parameters (cutting speed, feed rate, and depth of cut) on cutting forces and surface roughness were investigated during face milling of AISI O2 cold work tool steel (~61 HRC). The experiments were conducted based on 313 factorial design by response surface methodology, and response surface equations of cutting forces and surface roughness were obtained. In addition, the cutting forces obtained with the coated and uncoated tools were compared. The results showed that the interaction of coating type and depth of cut affects surface roughness. The hard coating type has no significant effect on cutting forces, while the cutting force F z is approximately two times higher in the case of uncoated tool.  相似文献   

3.
Tool wear is one of the most important problems in cutting titanium alloys due to the high-cutting temperature and strong adhesion. Recently, the high-speed machining process has become a topic of great interest for titanium alloys, not only because it increases material removal rates, but also because it can positively influence the properties of finished workpiece. However, the process may result in the increase of cutting force and cutting temperature which will accelerate tool wear. In this paper, end milling experiments of Ti-6Al-4V alloy were conducted at high speeds using both uncoated and coated carbide tools. The obtained results show that the cutting force increases significantly at higher cutting speed whether the cutter is uncoated carbide or TiN/TiAlN physical vapor deposition (PVD)-coated carbide. For uncoated carbide tools, the mean flank temperature is almost constant at higher cutting speed, and no obvious abrasion wear or fatigue can be observed. However, for TiN/TiAlN PVD-coated carbide tools, the mean flank temperature always increases as the increase of cutting speed, and serious abrasion wear can be observed. In conclusion, the cutting performance of uncoated inserts is relatively better than TiN/TiAlN PVD-coated inserts at a higher cutting speed.  相似文献   

4.
Titanium alloys are difficult-to-machine materials because of their poor machinability characteristics. Machining and machining performance evaluation for such materials is still a challenge. Individual machining performance indices like cutting forces, cutting energy and tool wear lead to ambiguous understanding. In this work, a Cumulative Performance Index (CPI) is defined which amalgamates non-dimensional forms of specific cutting energy, back force and average principal flank wear in turning. The CPI focuses upon simultaneous minimization of specific cutting energy, dimensional deviation and average principal flank wear. The defined index is then used to evaluate performance of five commercially available physical vapor deposited (PVD) TiAlN coated tungsten carbide/cobalt inserts vis-à-vis uncoated tungsten carbide/cobalt insert in turning of Ti-6Al-4V. Cutting forces were monitored during turning and tool wear was measured after turning experiments. The results showed that the performance of coated inserts was either comparable or poor than uncoated insert; and in no case, coated inserts performed better than uncoated insert. Although commercial recommendations are in place to use PVD coated inserts for enhanced machinability of titanium alloys, the use of coated inserts is not justified keeping in view the energy spent in coating and insignificant improvement in performance.  相似文献   

5.
Machining of Nimonic C-263 has always been a challenging task owing to its hot strength, low thermal conductivity, tendency to work harden and affinity towards tool materials. Although coated tools have been used to overcome some of these challenges, selection of coated tool with appropriate deposition technique is of immense significance. The current study attempts to comparatively evaluate various performance measures in machining of Nimonic C-263 such as surface roughness, cutting force, cutting temperature, chip characteristics, and tool wear with particular emphasis on different modes of tool failure for commercially available inserts with multi-component coating deposited using chemical vapour deposition (CVD) and physical vapour deposition (PVD) techniques. Influence of cutting speed (Vc) and machining duration (t) has also been investigated using both coated tools. The study demonstrated remarkable decrease in surface roughness (74.3%), cutting force (6.3%), temperature (13.4%) and chip reduction coefficient (22%) with PVD coated tool consisting of alternate layers of TiN and TiAlN over its CVD coated counterpart with TiCN/Al2O3 coating in bilayer configuration. Severe plastic deformation and chipping of cutting edge and nose, abrasive nose and flank wear along with formation of built-up-layer (BUL) were identified as possible mechanisms of tool failure. PVD coated tool successfully restricted different modes of tool wear for the entire range of cutting speed. Superior performance can be attributed to the hardness and wear resistance properties, thermal stability due to presence of TiAlN phase and excellent toughness owing to PVD technique and multilayer architecture.  相似文献   

6.
In the present investigation, AA6005 (ISO: AlSiMg) alloy was machined in turning operation with different cutting tools, such as uncoated cemented carbide insert, PVD TiN coated, CVD diamond coated and PCD insert, under dry environment. Effect of cutting speed was studied for each of the cutting tools with regard to the formation of built-up layer (BUL) or built-up edge (BUE). The rake surface of the tools was characterized by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopic microanalysis. Particular emphasis was given on wear mechanism of PVD TiN coated insert, conventionally used in machining ferrous alloys, during dry turning of AA6005 alloy. It has been observed that increase of cutting speed from 200 m/min to as high as 1000 m/min could not substantially reduce formation of BUL over tool rake surface during dry machining of AA6005 alloy with uncoated or PVD TiN coated cemented carbide inserts. The potential of diamond-based tools in dry machining of aluminium alloy was also studied. Finally, the effect of cutting speed on surface finish of the workpiece machined with different cutting tools was studied during dry turning of AA6005 alloy.  相似文献   

7.
Machining of aluminum and its alloy is very difficult due to the adhesion and diffusion of aluminum, thus the formation of built-up edge (BUE) on the surface. The BUE, which affects the surface integrity and tool life significantly, affects the service and performance of the workpiece. The minimization of BUE was carried out by selection of proper cutting speed, feed, depth of cut, and cutting tool material. This paper presents machining of rolled aluminum at cutting speeds of 336, 426, and 540 m/min, the feeds of 0.045, 0.06, and 0.09 mm/rev, and a constant depth of cut of 0.2 mm in dry condition. Five cutting tools WC SPUN grade, WC SPGN grade, WC + PVD (physical vapor deposition) TiN coating, WC + Ti (C, N) + Al2O3 PVD multilayer coatings, and PCD (polycrystalline diamond) were utilized for the experiments. The surface roughness produced, total flank wear, and cut chip thicknesses were measured. The characterization of the tool was carried out by a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) pattern. The chip underface was analyzed for the study of chip deformation produced after machining. The results indicated that the PCD tool provides better results in terms of roughness, tool wear, and smoother chip underface. It provides promising results in all aspects.  相似文献   

8.
The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched.In this paper,turning tests were conducted on cemented carbide tools with different coatings(a thick TiN/TiAlN coating,a thin TiN/TiAlN coating,and a nanocomposite(nc)TiAlSiN coating).All coatings were applied by physical vapor deposi-tion.In a comparative study of chip morphology,cutting force,cutting temperature,specific cutting energy,tool wear,and surface roughness,this study analyzed the cutting characteristics of the tools coated with various materials,and established the relationship between the cutting parameters and machining objectives.The results showed that in malleable cast iron machining,the coating material significantly affects the cutting performance of the tool.Among the three tools,the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force,the lowest cutting tempera-ture,least tool wear,longest tool life,and best surface quality.Moreover,in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions,the wear mechanism of the coated tools was found to depend on the cast iron being machined.Therefore,the performance requirements of a tool depend on multiple factors,and selecting an appropriately coated tool for a particular cast iron material is essential.  相似文献   

9.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

10.
PVD coated (TiN/TiCN/TiN, TiAIN and TiZrN) and uncoated carbide tools were used to machine a nickel base, C-263, alloy at high-speed conditions. The test results show that the multiple TiN/TiCN/TiN coated inserts gave the best overall performance in terms of tool life when machining at cutting speeds up to 68 m min and at depths of cut of 0.635 mm, 1.25 mm and 2.54 mm. All the tool grades tested gave fairly uniform surface roughness (Ra) values, below the rejection criterion, at lower speed conditions. The TiZrN coated inserts gave the lowest component forces when machining at lower cutting speed conditions while the TiA/N coated inserts gave the lowest component forces when machining at a higher speed of 68 m min?1 and depth of cut of 1.25 mm. This tool performance can generally be attributed to the difference in their ability to provide effective lubrication at the cutting zone, thermal conductivity of the coating materials as well as the cutting conditions employed. The uncoated carbide tools generally encountered more severe crater wear, chipping/fracture of the cutting edges as well as pronounced notching during machining. This is due to their inability to provide effective lubrication at the cutting zone, thus impeding the gliding motion of the chips along the rake and flank faces respectively, thus accelerating flank wear. Analysis of the worn tool edges revealed adhesion of a compact “fin-shaped” structure of hardened burrs with saw-tooth like edges. This generally alters the initial geometry of the cutting edge, consequently resulting to poor surface finish with prolonged machining.  相似文献   

11.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

12.
This paper presents the results of an experimental investigation on the wear mechanisms of uncoated tungsten carbide (WC) and coated tools (single-layer (TiAlN) PVD, and triple-layer (TiCN/Al2O3/TiN) CVD) in oblique finish turning of Inconel 718. Tool wear rate and wear mechanisms were evaluated for cutting speeds, 50<V<100 m/min, and feed rates, 0.075<f<0.125 mm/rev, at a constant depth of cut of 0.25 mm. It was concluded that abrasive and adhesive wear were the most dominant wear mechanisms, controlling the deterioration and final failure of the WC tools. While the triple layer CVD coated tools exhibited the highest wear resistance at high cutting speeds and low feeds, uncoated tools outperformed the single and multi-layer coated tools in the low range of cutting speeds and intermediate feeds. The cutting tool with single-layer PVD coating outperformed the other tools at the medium cutting speed.  相似文献   

13.
TiAlN涂层硬质合金刀具铣削35CrMoSiV钢的切削性能研究   总被引:1,自引:0,他引:1  
雷斌  莫继良  朱旻昊 《工具技术》2010,44(11):15-18
采用有和无PVD TiAlN涂层的细晶硬质合金铣刀对35CrMoSiV合金钢进行了干式端面铣削试验。分别测量了有、无涂层情况下铣刀后刀面径向磨损量和加工槽的表面粗糙度,通过光学显微镜观察了切屑,利用扫描电子显微镜(SEM)和电子能谱(EDX)分析了后刀面的磨损形态。研究结果表明:TiAlN涂层明显提高了硬质合金刀具的切削性能;硬质合金刀具后刀面磨损机制主要为粘着磨损和磨粒磨损,而涂层损伤是粘着磨损、剥层和氧化磨损共同作用的结果;在正常工作区内,提高铣削的转速和进给量,有利于减轻刀具的粘着,提高切削效率和质量。  相似文献   

14.
Flank wear progression and wear mechanisms of uncoated, coated with PVD applied single-layer TiAlN, and CVD applied multi-layer MT-TiCN/Al2O3/TiN cemented carbide inserts were analyzed during dry turning of hardened AISI 4340 steel (35 HRC). Experimental observations indicate that by applying a coating to the uncoated insert the limiting cutting speed increase from 62 to 200 m/min, which further extends up-to 300–350 m/min when using multi-layer coating scheme. Relatively lower wear rate seen when using single-layer TiAlN coated inserts. However, after removal of the thin layer of coating the wear rate increase rapidly, subsequently dominates the wear rate of multi-layer coated inserts. Cutting forces; especially axial and radial components have also shown the similar behavior and increase rapidly when the tool failure occurs. Flank wear, crater wear and catastrophic failure are the dominant forms of tool wear. Digital microscope and SEM images coupled with elemental analysis (EDAX) have been taken at various stages of tool life for understanding the wear mechanisms.  相似文献   

15.
为了更好地指导TiAlN涂层刀具在金属切削加工中的应用,采用物理气相沉积法制备了TiAlN涂层刀具,应用TiAlN涂层刀具和未涂层刀具对不同调质状态的40Cr钢进行了干式切削试验。通过对切削过程中切削力和切削温度检测,考察了TiAlN涂层刀具的切削性能。结果表明,与YTl5硬质合金刀具相比,TiAlN涂层刀具适合切削高硬度的金属材料,且优越性更明显。  相似文献   

16.
Two PVD coated powder metallurgy high speed steel (PM-HSS) gear cutters were investigated when machining helical gears made from AISI 19MnCr5 steel with hardness between 140 and 180 HV. Machining trials were carried out with gear cutters coated with TiAlN (nano layers) and TiN (mono layer). Crater and flank wears were measured and analysed after all the machining trials. Analyses of the worn tools show that the TiAlN coated gear cutter performed better than the TiN coated gear cutter. This can be attributed to its nano layers and the higher hardness of the TiAlN coating. The dominant tool wear mechanisms were adhesion, abrasion, delaminating of the coating layer and chipping of the cutting edge.  相似文献   

17.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

18.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

19.
Advanced coatings on cutting tools play an important role in improving the machinability of difficult-to-cut materials (e.g., titanium alloys, nickel-based superalloys, and ultra high strength steels). In this article, two kinds of coated carbide inserts, which were obtained by the methods of physical vapor deposition (PVD) and chemical vapor deposition (CVD), were used for face milling of titanium alloys TC11 and TC17. The wear mechanism and the performance of the coated inserts have been investigated when machining titanium alloys in the present work. The coated inserts were observed by scanning electron microscope (SEM) and energy dispersion spectrometer (EDS). Both tool failure modes and wear mechanisms were analyzed. The results indicate that PVD-(TiN + TiAlN)-coated carbide insert (Tool-A) is suitable for machining TC17 alloy under dry condition, and CVD-(TiN + Al 2 O 3 + TiCN)-coated insert (Tool-B) is useful for milling TC11 alloy. When face milling TC17 alloy without coolant, the crater with chipping and the breakage with flaking are the dominant modes of failure of PVD- and CVD-coated inserts, respectively. TC17 alloy is a more difficult-to-machine material than TC11 alloy.  相似文献   

20.
The performance of cemented carbide cutting tools during machining is influenced not only by the mechanical properties of the coating and substrate but also by the topographies of their surfaces. A tool with good coating and substrate properties but unsuitable topographies may exhibit accelerated wear and, consequently, impaired performance. In this work, drills coated using physical vapor deposition (PVD) were produced with different substrate textures, which in turn generated different coating textures. The surface roughness values of the coated drills were measured together with the residual stress at the interface between substrate and coating. Drilling tests were performed and tool wear was measured during the machining process. Two different tool coatings were studied: TiAlN and TiAlCrSiN. The goal was to study how the characteristics of the substrate and coating (material, surface topography, and residual stress) influence tool life. Tool life experiments were carried out using drilling tests in AISI 1548 steel, which is often used in crankshafts. The primary tool wear mechanism was attrition in all the drills. The main conclusion of this work is that the tool with the lowest roughness and a TiAlCrSiN coating had the best performance in the conditions tested here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号