首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The quantum mechanics model of a magnetic Stirling cooler is established. The optimal relation between the cooling load and the coefficient of performance (COP) is obtained. The maximum cooling load and corresponding COP as well as the maximum COP and the corresponding cooling load are derived. The optimization criteria for a magnetic Stirling cooler are determined. The results obtained here will be useful for the further understanding and the selection of the optimal operating conditions for a magnetic Stirling cooler. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

2.
在恒温热源内可逆四热源吸收式制冷循环的基础上,建立不可逆吸收式制冷循环的模型,考虑环境热源到制冷空间的热漏以及工质与外部热源间的热阻损失,导出牛顿定律下循环的制冷率和制冷系数的基本优化关系、最大制冷系数及相应的制冷率和最大制冷率及相应的制冷系数;并通过数值计算分析了循环参数对循环的制冷率、制冷系数的影响。  相似文献   

3.
Irreversible four-temperature-level absorption refrigerator   总被引:2,自引:0,他引:2  
A refrigeration cycle is modeled as a demonstration of an irreversible absorption refrigeration cycle. This four-temperature-level model takes into account the heat resistance, heat leakage, and irreversibilities due to internal dissipation of the working fluid. The fundamental optimal relationships between: (1) the coefficient of performance (COP) and the cooling load; (2) the maximum COP and the corresponding cooling load; and (3) the maximum cooling load and the corresponding COP of the cycle, all coupled to constant-temperature heat reservoirs, are derived by using finite-time thermodynamics. The optimal distribution relationships of the heat-transfer surface areas are also presented. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are useful for optimal design and performance improvement of absorption refrigeration cycles.  相似文献   

4.
On the basis of an endoreversible absorption refrigeration cycle model with linear phenomenological heat transfer law of Q∝Δ(T−1), an irreversible four-heat-reservoir cycle model is built by taking account of the heat resistance, heat leak and irreversibilities due to the internal dissipation of the working fluid. The fundamental optimal relation between the coefficient of performance (COP) and the cooling load, the maximum COP and the corresponding cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics. The optimal distribution relation of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of real absorption refrigerators.  相似文献   

5.
On the basis of an endoreversible absorption refrigeration cycle model with Newton's heat transfer law, an irreversible four-heat-reservoir cycle model with another linear heat transfer law of Q∝Δ(T−1) is built by taking account the heat leak and heat resistance losses. The fundamental optimal relation between the coefficient of performance (COP) and the cooling load, the maximum COP and the corresponding cooling load, as well as the maximum cooling load and the corresponding COP of the cycle with another linear heat transfer law coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics. The optimal distribution relation of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of a four-heat-reservoir absorption refrigeration cycle.  相似文献   

6.
建立了考虑外部有限速率传热过程和热源间热漏的不可逆半导体固态热离子制冷器模型,基于非平衡热力学和有限时间热力学理论导出了热离子制冷器的制冷率和制冷系数的表达式;对比分析了不可逆热离子制冷器与可逆热离子制冷器的发射电流密度特性、电极温度特性以及制冷系数特性;研究了不可逆系统的制冷率与制冷系数最优性能,得到了制冷率和制冷系数的最优运行区间;通过数值计算,详细讨论了外部传热以及内部导热、热源间热漏损失、热源温度、外加电压、半导体材料势垒等设计参数对热离子装置性能的影响。在总传热面积一定的条件下,进一步优化了高、低温侧换热器的面积分配以获得最佳的制冷率和制冷系数特性。结果表明,由于存在内部和外部的不可逆性,热离子装置的发射电流密度及制冷系数都会明显降低;不可逆半导体固态热离子制冷器的制冷率与制冷系数特性呈扭叶型;合理地选外加电压、势垒等参数,可以使制冷器设计于最大制冷率或最大制冷系数的状态。  相似文献   

7.
This study has determined the optimal ratios of heat conductance of a cold-side heat exchanger to that of a hot-side heat exchanger when the heating load and the coefficient of performance (COP) of the irreversible air heat pump cycles are taken as the optimization objectives. Both the optimum distributions of heat conductance corresponding to the maximum heating load and the maximum COP are less than 0.5 for the fixed total heat exchanger inventory. The influences of the heat reservoir temperature ratio, the total heat exchanger inventory, and the efficiencies of the compressor and expander on the optimum distribution of heat conductance and the maximum heating load and the maximum COP are analysed and shown by numerical examples.  相似文献   

8.
A solar refrigerator is made of a solar collector and a refrigeration system. Real solar refrigerators usually operate between two limits, maximum coefficient of performance (COP) and maximum cooling load. A new model is presented to describe an irreversible absorption refrigerator, in which not only the irreversibilities of heat conduction but also those resulting from friction, eddy and other irreversible effects inside the working fluid are considered. The influence of these irreversible effects on the performance of an absorption refrigerator with continuous flow is investigated. The analytical expressions of the optimal refrigeration coefficient and the cooling rate of the refrigerator are derived. The predictions of the model are compared with semi-empirical cycle model of single-stage absorption refrigeration machines. The results obtained here can describe the optimal performance of a four temperature level absorption refrigeration affected simultaneously by the internal and external irreversibilities and provide the theoretical bases for the optimal design and operation of real absorption refrigerators operating between four temperature levels.  相似文献   

9.
《Applied Energy》2005,81(1):55-71
On the basis of an endoreversible absorption heat-pump cycle, a generalized irreversible four-heat-reservoir absorption heat-pump cycle model is established by taking account of the heat resistances, heat leak and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat-transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating-load, the maximum COP and the corresponding heating-load, the maximum heating load and the corresponding COP, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat-exchangers are derived by using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples.  相似文献   

10.
An irreversible cycle model of the quantum Brayton refrigeration cycle using an ideal Bose or Fermi gas as the working substance is established. Based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases, expressions for several important performance parameters such as the cooling rate, coefficient of performance and power input, are derived. The influence of the degeneracy of quantum gases, the internal irreversibility of the working substance and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of the cycle is investigated. By using numerical solutions, the cooling rate of the cycle is optimized for a set of given parameters. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal boundaries of the coefficient of performance and power input are given. The optimally operating region of the cycle is determined. The expressions of some performance parameters for some special cases are derived analytically.  相似文献   

11.
《Applied Thermal Engineering》2007,27(8-9):1534-1542
A new cyclic model of a four-reservoir chemical potential transformer with irreversible mass transfer and mass leakage is put forward. The fundamental optimal relation between the coefficient of performance (COP) and the rate of energy pumping, the maximum rate of energy pumping and the corresponding COP, as well as the maximum COP and the corresponding rate of energy pumping are derived by using finite-time thermodynamics. Moreover, the optimal times of the four mass transfer processes and the optimal chemical potentials of the working fluid are also obtained. The results obtained herein are of importance to the optimal design of a four-reservoir chemical potential transformer.  相似文献   

12.
The performances of endoreversible Carnot refrigeration and heat pump cycles with loss of heat resistance and finite piston speeds are analysed and optimized by using the combination of finite time thermodynamics, finite speed thermodynamics and direct method. The unequal finite piston speed model on four branches is adopted. Expressions of cooling load of endoreversible Carnot refrigeration cycle and of heating load of endoreversible Carnot heat pump cycle are derived with a fixed cycle period and unequal finite piston speeds on the four branches. Numerical examples show that there exist optimal expansion ratios, which lead to maximum cooling load and maximum heating load for the fixed coefficient of performance (COP), respectively. The maximum cooling load, maximum heating load, optimal ratios of finite piston speeds and optimal hot- and cold-side working fluid temperatures versus COP characteristics for the endoreversible Carnot refrigeration and heat pump cycles are obtained. Moreover, the effects of design parameters on the performances of the two cycles are discussed.  相似文献   

13.
Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples.  相似文献   

14.
Experimental study and analysis on thermoelectric cooler driven by solar photovoltaic system has been carried out. Here the research attention is on testing of system performance under solar insolation. Experimental results revealed that unit could maintain the temperature in the cooler at 10–15°C and have a coefficient of performance (COP) of about 0.34. Analysis of thermoelectric cooling system has been conducted on the basis of COP, cooling capacity and environmental issues. Further investigations verified that the performance of the system is a function of solar insolation rate and temperature difference of hot and cold sides of thermoelectric module etc. There subsist most favorable solar insolation rate which allows COP and cooling production to be maximum value respectively. It is anticipated that the cooler would have prospective for cold storage of vaccine, food and drink in remote and rural areas or outdoor conditions where electricity is not available.  相似文献   

15.
This article investigates the effect of buckling on the cooling performance of planar thermoelectric (TE) coolers (TECs). The TEC is made up of n-type and p-type TE elements with large length-to-thickness ratio. Each TE element is modeled as a fixed–fixed thin plate. Theoretical model for the solutions of temperature and electric potential fields of the TE element after buckling is established. The corresponding coefficient of performance (COP) that indicates the cooling performance of TEC is also given. Influence of Seebeck coefficient, thermal conductivity, temperature difference, and the ratio of length-to-thickness on the cooling performance are discussed. It is found that buckling of TEC will reduce its cooling performance. A bigger Seebeck coefficient and smaller thermal conductivity can both improve the value of COP. It is also found that there is no maximum COP when the temperature difference across the TEC is zero. However, the effect of buckling on the cooling performance of TEC can be ignored if the TEC achieves the maximum COP. The peak value of COP is independent of the ratio of length-to-thickness of the TEC. An optimized value of the electric current corresponding to the maximum COP of the TEC is obtained.  相似文献   

16.
《Applied Energy》2002,72(2):495-511
An irreversible cycle model of the Stirling refrigeration-cycle, using a ferroelectric material as the working substance, is established. Several irreversibilities due to thermal resistances between the working substance and the heat reservoirs, regenerative losses in two regenerative processes, and heat-leak loss between the heat reservoirs are taken into account. The influence of these irreversible losses on the performance of the ferroelectric Stirling refrigeration-cycle is analyzed, based on a general expression of the polarization of ferroelectric materials and a linear heat-transfer law. The cooling rate is optimized for a given power input. Some fundamental optimal relations and general performance characteristic curves of the cycle are obtained. The maximum cooling rate and other relevant performance parameters are determined. Some special cases are discussed in detail. When the regenerative losses are neglected, the results obtained may be directly used to describe the optimal performance of a ferroelectric Carnot refrigeration-cycle. Moreover, it is expounded that the calculated results are very general and also suitable for the ferroelectric Stirling and Carnot refrigeration cycles whose working substances obey the Curie–Weiss law and Curie law.  相似文献   

17.
基于[火用]分析的观点,运用有限时间热力学方法对内可逆空气制冷机进行生态学优化,导出了换热器热导最优分配时的最佳制冷功率、熵产率以及生态学(E)目标函数的解析式,进一步求得最大E目标值时的工质等熵温比(压比)界限及相应的制冷系数、制冷功率和熵产率;采用数值计算分析了热源温比、换热器总热导以及高温热源温度和环境温度之比对该制冷机生态学最优性能的影响。结果表明:生态学目标函数不仅反映了[火用]输出率和熵产率之间的最佳折衷,而且也反映了制冷功率和制冷系数之间的最佳折衷。  相似文献   

18.
建立了考虑泵热空间到环境热源的热漏、工质循环的内部不可逆性以及工质与热源之间传热Q∝△(T^a)服从传热规律时的不可逆四热源吸收式热泵循环模型,导出了循环泵热率和泵热系数的一般关系;并导出了线性唯象传热定律时循环泵热率和泵热系数的基本优化关系、性能极值、循环中工质的最佳工作温度和换热器传热面积的最佳分配关系;通过数值耸例分析了传热规律、热漏和内不可逆性对循环性能的影响规律,比较了传热面积最优分配前后循环的最优性能。  相似文献   

19.
For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers.  相似文献   

20.
In this paper, a performance optimization based on ecological coefficient of performance (ECOP) criterion has been carried out for an irreversible air refrigeration cycles. The considered model includes irreversibilities due to finite-rate heat transfer, heat leakage and internal dissipations. The ECOP objective function is defined as the ratio of cooling load to the loss rate of availability (or entropy generation rate). The maximum of the ecological performance criterion and the corresponding optimal conditions have been derived analytically. The effects of irreversibility parameters on the general and optimal performances discussed detailed. The obtained results may provide a general theoretical tool for the ecological design of air refrigerators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号