首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Externally bonded carbon fibre‐reinforced polymers (CFRPs) have been applied to retrofit and strengthen civil structures. In this study, four‐point bending beams were manufactured and tested to examine the fatigue behaviour of the CFRP–concrete interface. The results indicated that the specimens exhibited debonding failure in the concrete beneath the adhesive layer under static loading. However, when cyclic loads were imposed on the small beams, debonding failure may occur in the adhesive layer. Moreover, fitting expressions were proposed to predict the shear stress–slip relationship between the CFRP sheets and concrete and the flexural strength of the CFRP‐strengthened beams under static loads, and good agreement with the test data was obtained. Finally, a fatigue life prediction model was also presented to capture the fatigue life of the CFRP–concrete interface under cyclic loads. The calculation results showed that the fatigue strength of the CFRP–concrete bond interface was approximately 65% of the ultimate load capacity.  相似文献   

2.
The paper aims at analysing the performance of Polyester Polymer Concrete (PPC) reinforced with steel and FRP rebars. The PPC is also compared with conventional cement concrete.

On the one hand, the effect of the polymer matrix microstructure on the mechanical performance (compression and flexural strength, deformability and Young’s modulus) is discussed.

On the other hand, static and dynamic bond behaviour under pure pull-out forces between the PPC and different rebars is tackled. It is analysed the behaviour of metallic and non-metallic rebars embedded in a PPC matrix when they are subjected to both monotonic and cyclic loads. Likewise, analogous tests were performed on cement concrete specimens in order to be able to compare the bonding performance in both types of concrete.  相似文献   


3.
考虑不均匀界面时混凝土弹性模量预测   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了考虑不均匀界面时混凝土弹性模量预测的解析法。根据界面层上水泥颗粒的分布特性, 给出了界面层上任一点处的局部水灰比和孔隙率。将不均匀界面层划分成一系列同心球壳单元, 通过反演方法确定了每个球壳单元和水泥石基体的弹性模量。将三相混凝土分解成一系列两相复合子结构, 应用两相复合球模型的正确解导出混凝土弹性模量。通过与文献中的两组实验结果比较验证了本文方法的有效性。数值结果表明, 对于给定的骨料体积分数, 混凝土弹性模量随着最大水泥颗粒直径和水灰比的增大而减小, 但随着最大骨料直径的增大而增大, 骨料级配对混凝土弹性模量也有一定的影响。   相似文献   

4.
The aim of this work is to critically assess the mechanical properties of hollow concrete masonry using experimental results from prisms constructed with blocks of two different strengths and four types of mortar. A key conclusion is that mortar is mostly responsible for the non-linear behavior of masonry. Moreover, a strongly non-linear relationship between masonry elasticity modulus and compressive strength is found, which contradicts the simple linear relation proposed by Eurocode 6 [CEN. Eurocode 6: Design of masonry structures – Part 1 – Common rules for reinforced and unreinforced masonry structures. EN-1996-1-1; 2005.]. The porosity of mortar and the state of stress that mortar undergoes in the process of compressive loading can be responsible for changes in the mechanical properties, such as elasticity modulus and Poisson’s ratio. Finally, different types of mortars induce different failure modes in the masonry prisms and there is clear evidence that the failure of hollow concrete masonry starts after onset of mortar crushing. In order to better reproduce the observed experimental behavior, a tentative model for the mortar Poisson’s ratio variation upon loading is also presented.  相似文献   

5.
This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interfacial transition zone (ITZ) around steel reinforcement. The bond and interfacial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades.The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10–40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.  相似文献   

6.
The modeled recycled aggregate concrete (MRAC) which is an idealized model for the real recycled aggregate concrete (RAC) was used in this study. The MRCAs prepared with two types of old mortars were modified by an accelerated carbonation process. The effects of carbonation of MRCA on the micro-hardness of MRCA and the mechanical properties of MRAC were investigated. The results indicated that the micro-hardness of the old interfacial transition zone (ITZ) and the old mortar in the carbonated MRCAs was higher than that in the uncarbonated MRCAs, and the enhancement of the old ITZ was more significant than that of the old mortar. The compressive strength and modulus of MRACs increased when the carbonated MRCAs were utilized, and the improvement was more significant for MRAC prepared with a higher w/c. In addition, a numerical study was carried out and it showed that the improvement in strength by carbonation treatment was less obvious when the difference between the new and old mortar was larger.  相似文献   

7.
Concrete is a mixture of cement, water and aggregates. In terms of microstructure, besides the cement paste matrix and aggregate inclusions, there is a third phase, which is called the interfacial transition zone (ITZ), which forms due to the wall effect and can be thought of as a thin shell that randomly forms around each aggregate. Thus, concrete can be viewed as a bulk paste matrix containing composite inclusions. To compute the elastic properties of a concrete composite, a differential effective medium theory (D-EMT) is used in this study by assigning elastic moduli to corresponding bulk paste matrix, ITZ and aggregate. In this special D-EMT, each aggregate particle, surrounded by a shell of ITZ of uniform thickness and properties, is mapped onto an effective particle with uniform elastic moduli. The resulting simpler composite, with a bulk paste matrix, is then treated by the usual D-EMT. This study shows that to assure the accuracy of the D-EMT calculation, it is important to consider the increase in the water:cement mass ratio (w/c) of the ITZ and the corresponding decrease in w/c ratio of the bulk matrix. Because of this difference in w/c ratio, the contrast of elastic moduli between the ITZ and the bulk paste matrix needs to be considered as a function of hydration age. The Virtual Cement and Concrete Testing Laboratory (VCCTL) cement hydration module is used to simulate the microstructure of cement paste both inside and outside the ITZ. The redistribution of calcium hydroxide between ITZ and bulk paste regions can further affect the elastic contrast between ITZ and bulk paste. The elastic properties of these two regions are computed with a finite element technique and used as input into the D-EMT calculation. The D-EMT predictions of the elastic properties of concrete composites are compared with the results measured directly with a resonant frequency method on corresponding composites. This comparison shows that the D-EMT predictions agree well with experimental measurements of the elastic properties of a variety of concrete mixtures.  相似文献   

8.
Enhancement mechanism of new type autoclaved shell-aggregate on concrete was studied by the experiment, using the X-ray diffraction, scanning electron microscopy, and the homogenization analysis methods. The experimental results indicate that effective elastic modulus of shell-aggregate match with the elastic modulus of the mortar matrix, which can explain the enhancement effect of shell-aggregate on mortar matrix. Homogenization method can reflect the actual contribution degree of autoclaved aggregate on concrete performance ideally. Errors between the calculated value and the measured value are only 5%, 6.7%, and 5.8% when the volume fractions of aggregate are 16%, 32%, and 44%, respectively. High strength of autoclaved shell-aggregate concrete is due to a combined action of matched elastic modulus between autoclaved shell-aggregate and mortar matrix, active gradient interface structure between shell-aggregate and mortar matrix, and small deviatoric tensor of stress between shell-aggregate and mortar matrix.  相似文献   

9.
CFL增强RC梁抗弯疲劳强度的实验研究   总被引:1,自引:0,他引:1  
牛鹏志  黄培彦  杨怡  林荣伟 《工程力学》2007,24(11):132-135
疲劳强度是进行结构抗疲劳设计的重要力学参量。通过对5组24条碳纤维薄板(CFL)增强RC梁进行三点弯曲常幅疲劳试验,得到了增强梁的容许疲劳寿命和极限疲劳寿命S-N曲线及其相应的表达式,并推定其容许疲劳强度和极限疲劳强度分别为其极限承载力的62%和68%。还给出了新的疲劳寿命曲线的表达形式:载荷做功的功率H与增强梁的疲劳寿命N的关系曲线(H-N曲线),并由此推定了增强梁的容许疲劳强度和极限疲劳强度所对应的功率值。  相似文献   

10.
考虑到混凝土细观非均质性的影响,从细观角度出发,认为混凝土是由骨料、界面过渡区、砂浆基质及初始缺陷组成的四相复合材料,建立了混凝土简支梁的二维随机骨料模型。采用耦合材料应变率效应的塑性损伤本构模型来描述砂浆基质及界面的力学性能;假定骨料不产生损伤破坏,设定为弹性。对无缺陷、2%和5%孔隙率的混凝土梁进行弯拉破坏数值研究,探讨初始缺陷及加载速率对混凝土梁弯拉破坏模式、弯拉强度及宏观应 力-应变关系的影响。数值结果表明:混凝土弯拉破坏模式及宏观力学性能具有明显的加载速率相关性;初始缺陷的存在对混凝土破坏模式及宏观力学性能具有很大的影响。  相似文献   

11.
为研究混凝土材料的动态性能,利用MTS-810NEW液压伺服试验机对尺寸为100 mm×100 mm×510 mm棱柱体混凝土材料试样进行了初始静态荷载为0~20 k N的动态轴向拉伸试验,研究了混凝土材料经历不同初始静态荷载后的动态拉伸破坏特征、应力应变关系和动态抗拉强度。结果表明:荷载值由静态过渡到动态荷载时,混凝土材料的动弹性模量发生较大变化,且随着初始静态荷载值的增加,混凝土材料动弹性模量有增大趋势;混凝土材料动态应力应变关系曲线中,峰值应力所对应的应变值与初始静态荷载值无关;随着初始静态荷载的增加,混凝土材料动态拉伸破坏断面面积逐渐增大,且粗骨料被拉断的数目随着初始静态荷载的增加而先增加,后趋于平稳;随着初始预加静态荷载值的增加,混凝土材料的动态轴向拉伸强度先增加,然后趋于稳定。  相似文献   

12.
As an engineered material, ultra‐high toughness cementitious composite (UHTCC) exhibits the characteristics of pseudo strain hardening and multiple cracking under uniaxial tension. It can be applied as the reinforcing and protective material of concrete structures. In this paper, static and fatigue flexural tests were carried out on UHTCC‐layered concrete composite beams, for which UHTCC layer was used on the tension side. Under both static and fatigue loads, plane section assumption was suitable for such composite beams, and a good bond strength was achieved between the two layers. For static specimens, the UHTCC layer enhanced the ductility of the concrete layer. While under cyclic loads, because of the reinforcing effect of UHTCC, more than one crack were formed in the concrete layer, which led to a ductile deformation. Furthermore, the fatigue damage process of the composite beam was analysed.  相似文献   

13.
Concrete bridge decks reinforced with fiber reinforced polymer (FRP) composite panels have recently been used where the FRP panels also serve as the permanent formwork for concrete. Comparing to their short-term behavior, their long-term performance especially under repeated traffic loads (fatigue) has not yet been widely known. This paper presents a fatigue analysis tool developed for a new steel-free concrete bridge deck reinforced with carbon FRP stay-in-place form. The developed model takes into account the cyclic creep of concrete in compression, the reduction in flexural stiffness due to fatigue tensile cracking and the reduction in modulus of rupture under cyclic loading. Comparisons with experimental data show reasonable agreement where a full-size 2-span deck specimen was subjected to millions of fatigue cycles. The parametric study recommends reducing the amount of FRP reinforcement and concrete strength of the current design, and lower loading rate may introduce more stiffness degradation in the system.  相似文献   

14.
In order to investigate the failure processes of Recycled Aggregate Concrete (RAC), cracking behavior of modeled RAC specimens under compressive loading was investigated using Digital Image Correlation (DIC). Strain and displacement contour maps were produced to analyze the cracks’ initiation and propagation during loading. The testing results indicate that the discrepancy between the elastic moduli of coarse aggregates and mortar matrix significantly influences the mechanical properties and crack patterns of the modeled materials. It is found that the failure process is related to the relative strength of coarse aggregate and mortar matrix. For modeled RAC, the first bond cracks appear around both the old and new interfacial transition zones (ITZ), and then propagate into the old and new mortar matrix by connecting each other. The observation implies that the initiations and propagations of microcracks are different between RAC and Natural Aggregate Concrete (NAC). The findings in this investigation are useful to improve the mechanical properties of RAC by optimizing the mix proportion.  相似文献   

15.
In this paper, the validity and performance of base force element method (BFEM) based on potential energy principle was studied by some numerical examples. And the BFEM on damage mechanics is used to analyze the size effect on tensile strength for recycled aggregate concrete (RAC) at meso-level. The recycled aggregate concrete is taken as five-phase composites consisting of natural coarse aggregate, new mortar, new interfacial transition zone (ITZ), old mortar and old ITZ on meso-level. The random aggregate model is used to simulate the meso-structure of recycled aggregate concrete. The size effects of mechanical properties of RAC under uniaxial tensile loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for RAC.  相似文献   

16.
考虑过渡区界面影响的混凝土宏观力学性质研究   总被引:1,自引:0,他引:1  
杜修力  金浏 《工程力学》2012,29(12):72-79
混凝土材料的宏观力学特性及破坏机理由其细观组分来决定,界面过渡区是影响混凝土断裂破坏路径及宏观力学特性的重要因素。认为界面过渡区是区别于远处砂浆基质的一层含较高孔隙率的近场砂浆材料,采用“两步等效法”得到了混凝土细观单元的等效本构关系模型。最后基于细观单元等效化方法分析了在单轴拉伸、单轴压缩及弯拉载荷条件下混凝土试件的破坏过程及宏观力学性质,探讨了界面过渡区对混凝土力学特性的影响,并与随机骨料模型分析结果进行了对比。结果表明:界面相的存在对混凝土的弹性模量、强度及残余强度等力学性质有很大影响,在对混凝土宏观力学特性及细观断裂破坏过程进行研究时不可忽略其影响。  相似文献   

17.
史才军  曹芷杰  谢昭彬 《材料导报》2016,30(23):96-103, 126
再生混凝土的应用,不仅能够解决废弃混凝土处理问题;又能降低因资源过度开采所引起的生态环境破坏,因而具有广阔的发展前景。相比于普通混凝土,再生混凝土的抗压强度、弹性模量以及抗疲劳性能较低,主要与再生骨料多方面因素的影响有关。对近年来再生混凝土力学性能相关研究进展进行了综述,再生骨料总吸水率是降低抗压强度的主要原因,疲劳性能则主要与再生骨料取代率和附着砂浆含量有关。在再生混凝土中掺加矿物掺合料能够改善新、旧双界面从而提高抗压强度和劈裂抗拉强度,掌握多个因素的影响和作用对再生骨料和再生混凝土进一步研究和应用具有重要意义。  相似文献   

18.
通过快速冻融试验,研究了三种不同冻融介质(水、3.5wt%NaCl、飞机除冰液)对混凝土质量损失、动弹模量以及力学性能的影响,比较了三种冻融介质对混凝土损伤程度的大小,分析了混凝土相对动弹性模量与相对剩余抗压强度和相对剩余抗折强度之间的关系,基于相对动弹性模量建立了相对剩余抗压强度和相对剩余抗折强度衰减方程。结果表明:3.5wt%NaCl溶液对混凝土的损伤度要远大于单纯水冻融循环对混凝土的损伤度,飞机除冰液对混凝土冻融损伤具有抑制作用;混凝土抗压、抗折强度以及相对动弹性模量随着冻融循环次数的增加而降低;三种冻融介质下混凝土抗压、抗折强度损失率大小关系为:3.5wt%NaCl水飞机除冰液;相对动弹性模量与相对剩余抗压强度、相对剩余抗折强度相关性好,可以通过测定混凝土相对动弹性模量来评估混凝土相对剩余强度。  相似文献   

19.
Concretes containing mixed recycled aggregate (RA) have a larger number of coarse aggregate/paste interfacial transition zones (ITZs) than conventional concretes, due to the various component materials present in recycled aggregate. This study investigated the properties of various RA/paste ITZs in concrete using nanoindentation and scanning electron microscopy (SEM) and analysed the possible impact of the properties of the ITZs on the macro-mechanical performance of recycled concrete. It was found that the elastic modulus of the ITZ varies with the type of constituent materials present in recycled aggregate, with ITZs associated with organic components (e.g. wood, plastic and asphalt) exhibiting lower minimum elastic modulus values. The impact of ITZ properties on macro-mechanical properties of concrete depends on the relative content of different constituent materials present in the recycled aggregate and the micro-mechanical properties of the ITZs involved.  相似文献   

20.
钢筋混凝土的热应力分析   总被引:2,自引:0,他引:2  
基于热力学和材料力学,分析了在盐冻循环、钢筋锈蚀与弯曲荷载协同作用下钢筋混凝土梁试样内部的热应力和机械应力分布及其损伤演变的规律,导出了钢筋混凝土在循环变温过程中不同方向的热应力的一般性计算公式及分布状态以及四点弯曲荷载下钢筋和混凝土各自承受的应力状态.分析结果表明温度应力沿梁试样长度方向非均匀分布,而弯曲应力与钢筋和混凝土的弹性模量之比有关.研究表明混凝土在盐冻循环、钢筋锈蚀与弯曲荷载协同作用下的损伤失效机理是温度疲劳导致的混凝土损伤以及腐蚀液渗透导致钢筋锈蚀共同作用引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号