首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

2.
The freeze–thaw stability of 5 wt% hydrogenated palm oil-in-water emulsions (pH 3) containing droplets stabilized by sodium dodecyl sulfate (SDS)–chitosan–pectin membranes was studied. The multilayered interfacial membranes were created using an electrostatic layer-by-layer deposition method. The ζ-potential, mean particle diameter, fat destabilization, apparent viscosity and microstructure of the emulsions were used to examine the influence of freezing on their stability. Emulsions containing oil droplets stabilized only by SDS were highly unstable to droplet coalescence when either the oil phase became partially crystallized or the water phase crystallized. Emulsions containing oil droplets stabilized by SDS–chitosan membranes were stable to droplet coalescence, but unstable to droplet flocculation. Emulsions containing droplets stabilized by SDS–chitosan–pectin membranes were stable to both droplet coalescence and flocculation. The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to freeze–thaw cycling.  相似文献   

3.
Li J  Ye A  Lee SJ  Singh H 《Food & function》2012,3(3):320-326
In this study, in vitro intestinal lipid digestion and the physicochemical and microstructural changes of sodium caseinate-stabilized emulsions were examined after the emulsions had been digested in a model simulated gastric fluid containing pepsin for different times. The average size, size distribution, microstructure, proteolysis of interfacial proteins and lipolysis of the emulsion droplets were monitored as a function of digestion time. The emulsion droplets underwent extensive droplet flocculation, with some coalescence together with proteolysis of interfacial proteins, in simulated gastric fluid, resulting in changes in the droplet size and the microstructure of the emulsions. In general, digestion in simulated gastric fluid containing pepsin accelerated coalescence of the emulsion droplets during subsequent digestion in simulated intestinal fluid containing pancreatic lipase. However, the changes in the size, the microstructure and the proteolysis of the interfacial proteins of the emulsions under gastric conditions did not influence the rate and the extent of lipid digestion in the subsequent intestinal environment.  相似文献   

4.
Droplet diameter and the polydispersity of droplet size tended to decrease with increased proportion of peanut oil. Macromolecular additives affected droplet size. Xanthan gum or sodium carboxymethyl-cellulose (Na-CMC) produced smaller droplets than the controls, but the average diameter was independent of the composition of the dispersed phase. At 50°C the coalescence stability of these emulsions qualitatively correlated with the initial droplet diameter. Xanthan gum and Na-CMC, despite increasing continuous phase viscosity, gave lower stability than controls, primarily the result of flocculation of droplets due to depletion of the highly hydrophilic macromolecule from the intervening region between approaching droplets. At 25°C, stability increased as solid butter oil content of the dispersed phase increased.  相似文献   

5.
The influence of added xanthan gum on rheological and dispersion characteristics and stability of concentrated (50% w/w) corn oil-in-water emulsions, stabilized with 5% (percentage on oil amount) polyoxyethylene (20) sorbitan monooleate (Tween 80), have been investigated. Emulsion with no xanthan indicated coalescence and poor creaming stability. All emulsions, with and without xanthan, showed shear-thinning flow behavior. Addition of xanthan protected emulsions from coalescence during 15 days of storage. Increase in xanthan concentration led to decrease in droplet average radius and creaming index, and increase in elastic properties of emulsions. Decrease in the emulsions flow behavior indexes, which suggested the extent of non-Newtonian behavior of emulsions, was influenced by increase in xanthan concentration. Above 0.04% of xanthan concentration, G′ and G″ values indicated formation of weak gels. Gel structure existence arises from droplet network association, due to depletion flocculation. Standard deviation of emulsions droplet size mean diameter decreased while concentration of added xanthan increased.  相似文献   

6.
ABSTRACT: The creaming velocity, apparent viscosity, and ultrasonic attenuation spectra (1 to 50 MHz) of 5 wt% n hexadecane oil-in-water emulsions containing different droplet radii (r = 0.15 - 0.7 μm), biopolymer types (gum arabic or modified starch), and biopolymer concentrations (0 to 2.5 wt%) were measured. Depletion flocculation was observed in the emulsions when the nonabsorbed biopolymer concentration exceeded a critical concentration (CFC). The CFC increased with decreasing droplet radius for both biopolymers because the magnitude of the depletion attraction increases with droplet size. The CFC was lower for gum arabic than modified starch because it has a higher effective volume in solution. Depletion flocculation led to an increase in creaming instability and apparent viscosity of the emulsions. Flocculation could be nondestructively monitored by measuring the decrease in ultrasonic attenuation of the emulsions. These results show that depletion flocculation by gum arabic and modified starch can have an adverse effect on the stability of beverage emulsions.  相似文献   

7.
Iron (Fe3+) was encapsulated within the internal aqueous phase of water-in-oil-in-water (W/O/W) emulsions, and then the impact of this iron on the oxidative stability of fish oil droplets was examined. There was no significant change in lipid droplet diameter in the W/O/W emulsions during 7 days storage, suggesting that the emulsions were stable to lipid droplet flocculation and coalescence, and internal water diffusion/expulsion. The initial iron encapsulation (4 mg/100 g emulsion) within the internal aqueous phase of the water-in-oil (W/O) emulsions was high (>99.75%), although, a small amount leaked out over 7 days storage (≈10 μg/100 g emulsion). When W/O/W emulsions were mixed with fish oil droplets the thiobarbituric acid-reactive substances (TBARS) formed decreased (compared to fish oil droplets alone) by an amount that depended on iron concentration and location, i.e., no added iron < iron in external aqueous phase < iron in internal aqueous phase. These differences were attributed to the impact of W/O droplets on the concentration and location of iron and lipid oxidation reaction products within the system.  相似文献   

8.
This study introduces Alyssum homolocarpum seed gum, as a natural stabilizer for O/W emulsions. The droplets characteristics, flow properties and physical stability of ultrasonically prepared corn oil-in-water emulsions were investigated at various gum concentrations. The results indicated that for the freshly prepared emulsions, the mean diameter of droplets decreased significantly with an increase in gum concentration from 0.25% to 0.75%. Storage of emulsions for a period of 4 weeks resulted in an increase in the size of droplets, being substantially greater for the samples containing 0.25 and 0.5% gum and negligible for those prepared with 0.75 and 1.0% gum. Similar trend was observed for the specific surface area of droplets but in the opposite direction. Optical microscopy demonstrated that increasing the proportion of gum up to 0.75% reduced the extent of flocculation and coalescence and enhanced monodispersity. Newtonian and non-Newtonian shear-thinning flow behaviors were observed for emulsions prepared with 0.25% gum concentration and those containing higher concentrations respectively. Accordingly, faster creaming was found to be associated with the emulsions prepared with low gum concentration.  相似文献   

9.
The effects of ionic strength (0–150 mM NaCl) and the presence of mucin (0.1 wt%) on the properties of oil-in-water emulsions [20.0 wt% soy oil, stabilized by 1.0 wt% β-lactoglobulin (β-lg)] under simulated gastric conditions (with/without 0.32 wt% pepsin at 37 °C, with continuous shaking at approximately 95 rev/min for 2 h) were investigated. Changes in Z-average diameter, ζ-potential and microstructure were determined as a function of incubation time. The emulsions mixed with simulated gastric fluid (SGF) (without added pepsin) were stable at low ionic strength (≤50 mM NaCl) but showed some aggregation at high ionic strength (≥150 mM NaCl). Extensive droplet flocculation with some degree of coalescence was observed in emulsions with 0.32 wt% added pepsin, the flocculation being potentially accelerated in the presence of NaCl. The addition of 0.1 wt% mucin resulted in a greater extent of flocculation, possibly because of non-specific binding of mucin to the positively charged β-lg emulsion droplets. Ionic strength and the presence of mucin had a significant influence on the rate of hydrolysis of β-lg by pepsin. The behaviour of the emulsion in SGF was predominantly driven by electrostatic interactions, which varied as a function of digestion time, ionic strength and the presence of pepsin and mucin.  相似文献   

10.
The effect of pH on the capability of whey protein isolate (WPI) and fish gelatin (FG), alone and in conjugation, to form and stabilize fish oil-in-water emulsions was examined. Using layer-by-layer interfacial deposition technique for WPI–FG conjugate, a total of 1% protein was used to prepare 10% fish oil emulsions. The droplets size distributions and electrical charge, surface protein concentration, flow and dynamic rheological properties and physiochemical stability of emulsions were characterize at two different pH of 3.4 and 6.8 which were selected based on the ranges of citrus and milk beverages pHs, respectively. Emulsions prepared with WPI–FG conjugate had superior physiochemical stability compare to the emulsions prepared with individual proteins. Higher rate of coalescence was associated with reduction in net charge and consequent decrease of the repulsion between coated oil droplets due to the proximity of pH to the isoelectric point of proteins. The noteworthy shear thinning viscosity, as an indication of flocculation onset, was associated with whey protein stabilized fish oil emulsion prepared at pH of 3.4 and gelatin stabilized fish oil emulsion made at pH of 6.8. At pH 3.4, it appeared that lower surface charge and higher surface area of WPI stabilized emulsions promoted lipid oxidation and production of hexanal.  相似文献   

11.
ABSTRACT: The oxidative stability of polyunsaturated lipids can be improved by incorporating them in oil droplets surrounded by positively charged whey protein isolate (WPI) membranes. This study dealt with the factors that influence the physical properties of WPI-stabilized oil-in-water emulsions at pH 3. Emulsions containing 5 to 50 wt% corn oil and 0.5 to 5.0 wt% WPI (protein-to-oil ratio of 1:10) were prepared at pH 3. The apparent viscosity of the emulsions increased appreciably at oil concentrations ≥ 35 wt%; however, the particle size was relatively independent of oil concentration. The influence of NaCl (0 to 250 m M ) on the physical properties of 28 wt% emulsions was examined. Significant increases in mean particle size, apparent viscosity, and creaming instability occurred at ≥150 m M NaCl, which were attributed to flocculation induced by screening of the electrostatic repulsion between droplets. The influence of heat treatment (30°C to 90°C for 30 min) on 28 wt% emulsions was examined in the absence and presence of salt, respectively. At 0 m M NaCl, heating had little effect on the physical properties of the emulsions, presumably because the electrostatic repulsion between the droplets prevented droplet aggregation. At 150 m M NaCl, the mean particle diameter, apparent viscosity, and creaming instability of the emulsions increased considerably when they were heated above a critical temperature, which was 70°C when salt was added before heating and 90°C when salt was added after heating. These results have important implications for the design of WPI-stabilized emulsions that could be used to incorporate functional lipids that are sensitive to oxidation, for example, ω-3 fatty acids.  相似文献   

12.
The impact of freeze–thaw cycles on the physical stability of oil-in-water emulsions containing lecithin – coated and modified starch – coated droplets has been studied by combined dynamic light scattering (DLS) and differential scanning calorimetry (DSC) measurements. Emulsions prepared by high-pressure homogenization were within 200 nm size ranges. Lecithin-based emulsion systems were unstable to freeze–thaw cycles, which was attributed to extensive droplet aggregation induced by the ice formation during emulsion freezing process. Instead, modified starch systems were highly stable due to the formation of a thick layer of emulsifier which prevented the coalescence of nanoemulsions. The addition of ice nucleating protein lowered the freeze–thaw stability of lecithin-based emulsions, but had negligible effect on modified starch-based emulsions. In contrast, the addition of poly(ethylene glycol) improved the stability of lecithin-based emulsions but destabilized the modified starch-based emulsion systems.  相似文献   

13.
The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time.  相似文献   

14.
The impact of dietary fibers on lipid digestion within the gastrointestinal tract depends on their molecular and physicochemical properties. In this study, the influence of the electrical characteristics of dietary fibers on their ability to interfere with the digestion of protein‐coated lipid droplets was investigated using an in vitro small intestine model. Three dietary fibers were examined: cationic chitosan; anionic alginate; neutral locust bean gum (LBG). The particle size, ζ‐potential, microstructure, and apparent viscosity of β‐lactoglobulin stabilized oil‐in‐water emulsions containing different types and levels of dietary fiber were measured before and after lipid digestion. The rate and extent of lipid digestion depended on polysaccharide type and concentration. At relatively low dietary fiber levels (0.1 to 0.2 wt%), the initial lipid digestion rate was only reduced by chitosan, but the final extent of lipid digestion was unaffected by all 3 dietary fibers. At relatively high dietary fiber levels (0.4 wt%), alginate and chitosan significantly inhibited lipid hydrolysis, whereas LBG did not. The impact of chitosan on lipid digestion was attributed to its ability to promote fat droplet aggregation through bridging flocculation, thereby retarding access of the lipase to the droplet surfaces. The influence of alginate was mainly ascribed to its ability to sequester calcium ions and promote depletion flocculation.  相似文献   

15.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

16.
Fish oil emulsions varying in sodium caseinate concentration (25% w/w oil and 0.1–1.0% w/w protein, giving oil-to-protein ratios of 250–25) were investigated in terms of their creaming stability, rheological properties, the mobility of oil droplets and the oil/protein interaction at the interface. The presence of excessive protein in an emulsion (i.e., at 1% w/w) caused the aggregation of oil droplets through depletion flocculation, resulting in low creaming stability and high low-shear viscosity. At a lower protein concentration (0.1% w/w), when protein was limited, the emulsion droplets were stabilised by bridging flocculation and showed good stability to creaming. Shear-thinning behaviour was observed for both flocculated emulsions. A reduction in the low-shear viscosity and a Newtonian flow was obtained for the emulsion containing an intermediate concentration of protein (0.25% w/w). At this concentration, there was relatively little excess unadsorbed protein in the continuous phase; thus the emulsion was most stable to creaming. NMR was used to characterise these emulsion systems without dilution. Shorter T2 values (by low-field 1H NMR), for the emulsions containing both high (1% w/w) and low (0.1% w/w) amounts of protein, indicated increased restricted mobility of oils, caused by depletion or bridging flocculation. The line broadening in oil signals in the high-field NMR spectra (1H, 13C) indicated increased interaction between oil molecules and proteins at the interface with increasing protein concentration in emulsions. In addition, 31P NMR spectra, which reflect the mobility of the casein component only, showed increased line broadening, with reduction in protein content due to the relatively higher proportion of the protein being adsorbed to the interface of the oil droplets, compared to that in the continuous phase (i.e., as the oil-to-protein ratio was increased). The T2 values of resonances of the individual groups on oil molecules, obtained using high-field 1H NMR, reflected their different environments within the oil droplet.  相似文献   

17.
The viscosity and degree of flocculation of 20 wt% n-hexadecane oil-in-water emulsions stabilized by whey protein isolate (1 wt% WPI in 0.05M phosphate buffer, pH 7.0) increased as the emulsions aged. These effects were reduced when N-ethylmaleimide, a sulfhydryl blocking agent, was added to the emulsions immediately after homogenization, but were not completely eliminated. Gel electrophoresis (SDS-PAGE) showed an increase in the extent of intermolecular disulfide bond formation between proteins absorbed at the droplet interface with time. Floes were probably formed initially by noncovalent bonding or bridging flocculation, and then stabilized by disulfide bonds between proteins absorbed to different droplets.  相似文献   

18.
ABSTRACT Oil‐in‐water emulsions (20% n‐hexadecane, v/v) were stabilized by dodecyltrimethylammonium bromide (DTAB), Tween 20, or sodium dodecyl sulfate (SDS). Particle size distribution and creaming stability were measured before and after adding Escherichia coli cells to emulsions. Both E. coli strains promoted droplet flocculation, coalescence, and creaming in DTAB emulsions, although JM109 cells (surface charge = ‐35 mV) caused faster creaming than E21 cells (surface charge = ‐5 mV). Addition of bacterial cells to SDS emulsions promoted some flocculation and coalescence, but creaming stability was unaffected. Droplet aggregation and accelerated creaming were not observed in emulsions prepared with Tween 20. Surface charges of bacterial cells and emulsion droplets played a key role in emulsion stability.  相似文献   

19.
An influence of low molecular weight (LMW) chitosan on physicochemical properties and stability of low-acid (pH 6) tuna oil-in-water emulsion stabilized by non-ionic surfactant (Tween 80) was studied. The mean droplet diameter, droplet charge (ζ-potential), creaming stability and microstructure of emulsions (5 wt% oil) were evaluated. The added chitosan was adsorbed on the surface of oil droplets stabilized by Tween 80 through electrostatic interactions. Such addition of chitosan at different concentrations (0–10 wt%) to emulsions showed slight effect on the mean droplet diameter. However, the degree of flocculation was a function of chitosan concentration assessed by emulsions' microstructure and creaming index. The impact of chitosan on the strength of the colloidal interaction between the emulsion droplets increased with increasing chitosan concentration. The mean diameter of droplet in emulsions increased with increasing NaCl because of the electrostatic screening effect. The addition of LMW chitosan could be performed to create tuna oil emulsions with low-acid to neutral character, as well as various physicochemical and stability properties suitable for health food products.  相似文献   

20.
Water-in-mineral oil emulsions were prepared with small amounts of paraffin wax (0–2% w/w) added to the continuous phase, either by addition of pre-crystallized wax to the emulsion prior to emulsification or via subsequent quench-cooling of wax crystals in situ. Stability of the emulsions was examined using pulsed NMR droplet-size analysis, sedimentation and microscopy. Both pre and post-crystallized wax decreased the degree of droplet coalescence, however, emulsions made with post-crystallized wax were more stable over a 10-day period. Microscopy showed that visible crystals were strictly associated with droplets and droplet clusters indicating an affinity of the crystals to the interface. The incorporation of as little as 0.125% wax resulted in a notable decrease in emulsion sedimentation. After 24 days of storage, samples prepared with post-crystallized wax showed no sedimentation or flocculation, unlike pre-crystallized samples which were still somewhat destabilized despite the presence of as much as 2% wax. From these findings, rapid crystallization of wax in the continuous phase of a water-in-oil emulsion following emulsification is an effective means of enhancing long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号