首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical heat flux at high velocity channel flow with high subcooling   总被引:1,自引:0,他引:1  
A quantitative analysis of critical heat flux (CHF) in heated channels under high mass flux with high subcooling was successfully carried out by applying a new flow model to the existing CHF model of a macro-water-sublayer on the heated wall and steam blankets over it. The CHF correlation proposed could correctly predict the existing experimental data for circular tubes of 0.33–4 mm in diameter with mass flux of 124–90 000 kg (m2 s)−1 and inlet water subcooling of 35–210 K at 0.1–7.1 MPa, resulting in CHF of 4.2–224 MW m−2, and for rectangular channels of 3–20 mm gap with a mass flux of 940–27 000 kg (m2 s)−1 and inlet water subcooling of 13–166 K at 0.1–3.0 MPa, resulting in CHF of 2.0–62 MW m−2. An error of the CHF correlation has also been estimated.  相似文献   

2.
An experimental study on critical heat flux (CHF) has been performed for water flow in vertical round tubes under low pressure and low flow (LPLF) conditions to provide a systematic data base and to investigate parametric trends. Totally 513 experimental data have been obtained with Inconel-625 tube test sections in the following conditions: diameter of 6, 8, 10 and 12 mm; heated length of 0.31.77 m; pressure of 106951 kPa; mass flux of 20277 kg m−2 s−1; and inlet subcooling of 50654 kJ kg−1, thermodynamic equilibrium critical quality of 0.3231.251 and CHF of 1081598 kW m−2. Flow regime analysis based on Mishima & Ishii’s flow regime map indicates that most of the CHF occurred due to liquid film dryout in annular-mist and annular flow regimes. Parametric trends are examined from two different points of view: fixed inlet conditions and fixed exit conditions. The parametric trends are generally consistent with previous understandings except for the complex effects of system pressure and tube diameter. Finally, several prediction models are assessed with the measured data; the typical mechanistic liquid film dryout model and empirical correlations of (Shah, M.M., 1987. Heat Fluid Flow 8 (4), 326–335; Baek, W.P., Kim, H.G., Chang, S.H., 1997. KAIST critical heat flux correlation for water flow in vertical round tubes, NUTHOS-5, Paper No. AA5) show good predictions. The measured CHF data are listed in Appendix B for future reference.  相似文献   

3.
Critical heat flux (CHF) experiments have been carried out in a wide range of pressure for an internally heated vertical annulus. The experimental conditions covered a range of pressure from 0.57 to 15.01 MPa, mass fluxes of 0 kg m−2 s−1 and from 200 to 650 kg m−2 s−1, and inlet subcoolings from 85 to 413 kJ kg−1. Most of the CHFs were identified to the dryout of the liquid film in the annular-mist flow. For the mass fluxes of 550 and 650 kg m−2 s−1, the CHFs had a maximum value at a pressure of 2–3 MPa, and the pressure at the maximum CHF values had a trend moving toward the pressure at the peak value of pool boiling CHF as the mass flux decreased. The CHF data under a zero mass flux condition indicate that both the effects of pressure and inlet subcooling on the CHF were smaller, compared with those for the CHF with a net water upflow. The Doerffer correlation using the 1995 CHF look-up table and the Bowring correlation show a good prediction capability for the present CHF data.  相似文献   

4.
This paper describes an experimental study of subcooled and low quality film boiling for water in a vertical tube covering a mass flux range of 50–500 kg m−2 s−1 and an inlet subcooling range of 5–70°C. Discussion of various observed parametric trends on the film boiling section of the boiling curve is presented. The data are compared with the correlations of Ellion and Hsu.  相似文献   

5.
Using fault tree techniques, a quantitative estimate is made to predict both the start-up availability and operational reliability of the core auxiliary cooling system (CACS) of an HTGR following the postulated, simultaneous occurrence of a design basis depressurization accident (DBDA) and the complete loss of main loop cooling (LOMLC). The effects of a postulated, concurrent loss of offsite power are considered as well. Several potential common mode failures are identified. The limited availability of data presents a problem to numerical evaluation and estimates of uncertainty are at best crude. To provide a basis for measure of this uncertainty, the fault trees were solved using, on a consistent basis, either ‘optimistic’ failure rates, ‘pessimistic’ failure rates, or mean values (the geometric mean).Generally, about 80% of the failure rate data was larger than the ‘optimistic’ value, while only 20% was larger than the ‘pessimistic’ value. Predicated on a variety of assumptions, many of which may be unduly pessimistic, the CACS unavailability following a postulated DBDA and LOMLC has been estimated to be between 4 × 10−7 and 3 × 10−5 for the 2000 MW (th) HTGR and between 5 × 15−7 and 5 × 10−5 for the 3000 MW (th) HTGR. At the end of 300 hr, the estimated probability that the CACS will not leave sufficient core cooling capacity varies between 9 × 10−5 and 4 × 10−2 for the smaller plant and 3 × 10−4 and 6 × 10−2 for the larger plant. If it is further postulated that offsite power is concurrently lost, then the estimated mean unavailability at start-up is 3 × 10−3 for the 2000 MW (th) plant. The estimated mean probability that the CACS of the smaller plant will not be available at start-up and not be operational after 300 hr is 8 × 10−2.  相似文献   

6.
In the present work, power up-grading study is performed, for the first Egyptian Research Reactor (ET-RR-1), using the present fuel basket with 4×4 fuel rods, (17.5 mm pitch), and a proposed fuel basket with 5×5 fuel rods, (14.0 mm pitch), without violating the thermal hydraulic safety criteria. These safety criteria are; fuel centerline temperature (fuel melting), clad surface temperature (surface boiling), outlet coolant temperature, and maximum heat flux (critical heat flux ratio). Different thermal reactor powers (2–10 MW) and different core coolant flow rates (450, 900, 1350 m3 h−1) are considered. The thermal hydraulic analysis was performed using the subchannel code COBRA-IIIC for the estimation of temperatures, coolant velocities and critical heat flux. The neutronic calculations were performed using WIMS-D4 code with 5 — group neutron cross section library. These cross sections were adapted to use in the two-dimensional (2-D) diffusion code DIXY for core calculations. The study concluded that ET-RR-1 power can be upgraded safely up to 4 MW with the present 4×4-fuel basket and with the proposed 5×5-fuel basket up to 5 MW with the present coolant flow rate (900 m3 h−1). With the two fuel arrays, the reactor power can be upgraded to 6 MW with coolant flow rate of 1350 m3 h−1 without violating the safety criterion. It is also concluded that, loading the ET-RR-1 core with the proposed fuel basket (5×5) increases the excess reactivity of the reactor core than the present 4×4 fuel matrix with equal U-235 mass load and gave better fuel economy of fuel utilization.  相似文献   

7.
Hydrogen control is important in post-accident situations because of possibilities for containment rupture due to hydrogen deflagration or detonation. Post-accident hydrogen generation in BWR containments is analyzed as a function of engineered hydrogen control system, assumed either nitrogen inerting or air dilution. Fault tree analysis was applied to assess the failure probability per demand of each system. These failure rates were then combined with the probability of accidents producing various hydrogen generation rates to calculate the overall system hydrogen control probability. Results indicate that both systems render approximately the same overall hydrogen control failure rate (air dilution: 8.3 × 10−2−1.1 × 10−2; nitrogen inerting: 1.3 × 10−2−2 × 10−3). Drywell entries and unscheduled shutdowns were also analyzed to determine the impact on the total BWR accident risk as it relates to the decay heat removal system. Results indicate that inerting may increase the overall risk due to a possible increase in the number of unscheduled shutdowns due to a lessened operator ability to correct and identify ‘unidentified’ leakage from the primary coolant system. Further, possible benefits of inerting due to reduced torus corrosion and fire risk in containment appear to be dominated by the possible operations-related disadvantages.  相似文献   

8.
Experimental data are presented which describe heat transfer characteristics of turbulent supercritical carbon dioxide flow in vertical tubes with circular, triangular, and square cross-sections. Experiments are conducted at a constant pressure of 8 MPa under various conditions such as inlet bulk temperatures ranging from 15 to 32 °C, imposed heat fluxes from 3 to 180 kW/m2, and mass velocities from 209 to 1230 kg/m2 s. The corresponding Reynolds and Grashof numbers are in the range of 3 × 104 to 1.4 × 105, and 5 × 109 to 4 × 1011, respectively. The test section is composed of an entrance region of 0.6 m long and a heating region of 1.2 m long. Wall temperatures are measured by thermocouples installed at the outer surface of the heating region. In order to identify the effect of the cross-sectional shape on the supercritical heat transfer, wall temperature distributions in the streamwise direction are compared at the same heat flux and mass velocity conditions. Based on the wall temperature data, an improved heat transfer correlation, which can be applicable to both forced convection and mixed convection regimes, is proposed, and compared with previous ones.  相似文献   

9.
In this work, the effect of flow oscillations on critical heat flux (CHF) is investigated for water flow in vertical round tubes at low-pressure, low-flow (LPLF) conditions. An experimental study has been conducted to investigate the difference in CHF between forced and natural circulations, and between stable and oscillating flow conditions with three vertical round tube test sections (5.0 mm ID×0.6 m in length, 6.6 mm ID×0.5 m in length, and 9.8 mm ID×0.6 m in length) for mass fluxes below 400 kg m−2 s−1 under near atmospheric pressure. It is found that flow oscillations can drastically reduce the CHF, in particular for natural-circulation conditions. In addition to the experiments, CHF correction factors for flow oscillation effects are developed for forced and natural circulations, respectively, based on the experimental data of the present work and others.  相似文献   

10.
For the disposal of HLW-canisters in a salt dome, two different accident scenarios have to be considered, canister drops in the reloading hall or in a borehole with drop heights of 10 m and 600 m, and reference drop velocities of 14 m/s and 80 m/s.The experimental program had two parts:
• - Laboratory scale drop tests with bare and canistered waste glass probes (scale: 1:10) to obtain basic data.
• - Full scale drop tests with inactive HLW-canisters, specified as planned for the German salt repository (H = 1.335 m, Ø = 0.43 m, weight: 550 kg, canister: SST 1.4833, wall: 5 mm).
The size distributions of the broken fines were measured by sieving and those of the filtered airborne particles by particle size analysis. The dominating parameter is the impact velocity (i.e. impact energy), further test parameters show no measurable influence, especially the canister influence on the fracture or aerosol release is negligible.Source terms, evaluated for the respirable fraction (particles with d < 10 μ m are between 2 × 10−4% for a 10 m drop and 0.1% for a 600 m borehole drop.  相似文献   

11.
Incipient boiling wall superheat of sodium flowing in annulus was experimentally investigated. The annulus was 800 mm in length, 6 mm as inside diameter and 10 mm as outside diameter. The heat flux in the experiment was from 128 to 846 kW/m2, with inlet subcooling from 63.1 to 287.8 °C, mass flow rate from 7.2 to 122.0 kg/h and system pressure from 0.85 to 28.79 kPa. The experimental results indicated that the incipient boiling wall superheat increased with the increasing heat flux and inlet subcooling. And lower liquid velocity and system pressure could result in a higher incipient boiling wall superheat. Furthermore, a semi-empirical correlation was obtained from the experimental results. It was also found that the predicting results agreed well with the experimental data.  相似文献   

12.
The effect of axial heat flux distribution (AFD) on the critical heat flux (CHF) was investigated. CHF measurements were obtained with HFC-134a cooled vertical tubes having four non-uniform and one uniform AFD profiles. The HFC-134a test conditions covered a pressure range from 1.6 to 2.4 MPa, a mass-flux range from 2.8 to 4.7 Mg m−2 s−1, and an inlet-quality range from −0.9 to 0. The water-equivalent pressure and mass-flux ranges are 10–14 MPa and 4–6.5 Mg m−2 s−1, respectively.In general, the observed AFD effect on critical power is small at high inlet subcoolings. At low inlet subcoolings, the critical power for the inlet-peak profile is up to 15% higher than that for the outlet-peak profile. A local conditions analysis showed that the AFD has the strongest effect on CHF at high dryout qualities. CHF values for non-uniform AFDs could be 50% lower than those for the uniform AFD. The AFD effect on CHF becomes diminished with decreasing dryout quality.Four different approaches to account for the effect of AFD on CHF were assessed against the experimental values from the current experiment. The boiling-length-average heat-flux approach with the boiling-length starting point at the onset of annular flow (OAF) provided the best prediction of the critical power and the CHF location.  相似文献   

13.
The radioactive concentration in the primary loop and the radioactive release for both normal operations and accidents for the HTR-10 are calculated and presented in the paper. The coated-particle fuel is used in the HTR-10, which has good performance of retaining fission products. Therefore the radioactive concentration in the primary loop of the HTR-10 is very low, and the amount of radioactive release to the environment is also very small for both normal operation and accident conditions. The radiation doses to the public caused by radioactive release for both normal operations and accidents are given in the paper. The results show that the maximum individual effective dose to the public due to the release of airborne radioactivity during normal operations is only 1.4×10−4 mSv a−1, which is much lower than the dose limit (1 mSv a−1) stipulated by Chinese National Standard GB8703-86. For depressurization accident and water ingress accident, the maximum individual whole-body doses to man are only 7.7×10−2 and 2.0×10−1 mSv, thyroid doses only 1.7×10−1 and 1.1 mSv, respectively. They are much lower than the prescribed minimum of emergency intervention level (whole-body dose: 5 mSv, thyroid dose: 50 mSv) for sheltering measures stipulated by the Chinese Nuclear Safety Criterion HAD002/03. The conclusion is that the environmental impact is very small for normal operations and accidents for the HTR-10, and the requirements stipulated in the Chinese Nuclear Safety Criterions are satisfied perfectly.  相似文献   

14.
JR curves of the low alloy steel 20 MnMoNi 5 5 with two different sulphur contents (0.003 and 0.011 wt.%) were determined at 240°C in oxygen-containing high temperature water as well as in air. The tests were performed by the single-specimen unloading compliance technique at load line displacement rates from 1 × 10−4 down to 1 × 10−6 mm s−1 on 20% side-grooved 2T CT specimens in an autoclave testing facility at an oxygen content of 8 ppm and a pressure of 7 MPa under quasi-stagnant flow conditions.In the case of testing in high temperature water, remarkably lower JR curves than in air at the same load line displacement rate (1 × 10−4 mm s−1) were obtained. A decrease in the load line displacement rate as well as an increase in the sulphur content of the steel caused a reduction of the JR curves. At the fastest load line displacement rate a stretch zone could be detected fractographically on the specimens tested in air and in high temperature water and consequently Ji could be determined. When testing in high temperature water, the Ji value of the higher sulphur material type decreases from 45 N mm−1 in air to 3 N mm−1, much more than that of the optimized material type from 51 N mm−1 in air to 20 N mm−1 at 1 × 10−4 mm s−1.  相似文献   

15.
Fluid-to-fluid modeling of critical heat flux (CHF) is to simulate the CHF behaviors for water by employing low cost modeling fluid, and the flow scaling factor is the key to apply the technique to fuel bundles. The CHF experiments in 4×4 rod bundles have been carried out in Freon-12 loop in equivalent nuclear reactor water conditions (P=10.0–16.0 MPa, G=488.0–2100.0 kg/m2 s, Xcr=−0.20–0.30). The models in fluid-to-fluid modeling of CHF is verified by the CHF data for Freon-12 obtained in the experiment and the CHF correlation for water obtained by Nuclear Power Institute of China (NPIC) in the same 4×4 rod bundles. It has been found that the S.Y. Ahmad Compensation Distortion model, the Lu Zhongqi model, the Groeneveld model and Stevens–Kirby model overpredict the bundles CHF values for water. Then an empirical correlation of flow scaling factor is proposed. Comparison of the CHF data in two kinds of test sections for Freon-12, in which the distance of the last grid away the end of heated length is different, shows that the spacer grid, which is located at 20 mm away from the end of the heated length, has evidently influenced on the CHF value in the 4×4 rod bundles for Freon-12. This is different from that for water, and the need for further work is required.  相似文献   

16.
In order to estimate the risk associated with Pressurized Thermal Shock (PTS), a sample calculation of the core melt frequency and offsite consequences has been performed for Oconee Unit 1, a Babcock and Wilcox pressurized water reactor located in the United States. Core melt frequency was derived from through-wall-crack frequency estimates based on thermal-hydraulic and fracture mechanics analyses performed by Oak Ridge National Laboratory and Pacific Northwest Laboratory. The mode and timing of containment response was estimated from previous risk studies for Oconee Unit 3 and other plants with large dry containments.The core melt frequency was calculated to be 6 × 10−6 per reactor year for operation at the PTS screening criterion. Operation of redundant and independent containment heat removal systems results in low probability of containment failure. The risk dominant scenario involves overpressure failure of containment due to failure of containment heat removal. Prompt containment failure was assigned a very low probability (10−4), and hydrogen burn failure was not considered.The central estimate of annual risk was 5 × 10−7 early fatalities, 2 × 10−4 latent cancer fatalities and 0.7 person-rem. These values are minimal compared with other severe accident scenarios.Uncertainties and sensitivies to important parameters are discussed. The response of other types of plants is briefly described.  相似文献   

17.
An experimental study on the onset of nucleate boiling (ONB) is performed for water annular flow to provide a systematic database for low pressure and velocity conditions. A parametric study has been conducted to investigate the effect of pressure, inlet subcooling, heat and mass flux on flow boiling. The test section includes a Pyrex tube with 21 mm inner diameter and a stainless steel (SS-304) rod with outer diameter of 6 mm. Pressure, heat and mass flux are in the range of 1.73 < P < 3.82 bar, 40 < q < 450 kW/m2 and 70 < G < 620 kg/m2 s, respectively. The results illustrate that inception heat flux is extremely dependent on pressure, inlet subcooling temperature and mass flux; for example in pressure, velocity and inlet subcooling as 3.27 bar, 230 kg/m2 s and 41.3 °C; consequently qw,ONB is 177.3 kW/m2. In other case with higher inlet temperature of 71.5 °C and with P, 3.13 bar and G, 232 kg/m2 s the inception heat flux reached to 101.6 kW/m2. The data of ONB heat flux are over estimated from the existing correlation, and maximum deviation of wall superheat (ΔTw,ONB) from correlations is 30%. Experimental data of inception heat flux are within 22% of that predicted from the correlation.  相似文献   

18.
An experimental study of the critical heat flux (CHF) has been performed for a water flow in a non-uniformly heated vertical 3 × 3 rod bundle under low flow and a wide range of pressure conditions. The experiment was especially focused on the parametric trends of the CHF and the applicability of the conventional CHF correlations to a return-to-power conditions of a main steam line break accident whose conditions might be a low mass flux, intermediate pressure, and a high inlet subcooling. The effects of the mass flux and pressure on the CHF are relatively large and complicated in the low pressure conditions. At a high mass flux or a low critical quality, the local heat flux at the CHF location sharply decreases with an increasing local critical quality. However, at a low mass flux or a high critical quality, the local heat flux at the CHF location shows a nearly constant value regardless of the increase of the critical quality. The CHF data at the very low mass flux conditions are correlated well by the churn-to-annular flow transition criterion or the flow reversal phenomena. Several conventional CHF correlations predict the present return-to-power CHF data with reasonable accuracies. However, the prediction capabilities become worse in a very low mass flux of below about 100 kg/(m2 s).  相似文献   

19.
An artificial neural network (ANN) was applied successfully to predict flow boiling curves. The databases used in the analysis are from the 1960's, including 1,305 data points which cover these parameter ranges: pressure P=100–1,000 kPa, mass flow rate G=40–500 kg/m2-s, inlet subcooling ΔTsub =0–35°C, wall superheat ΔTw = 10–300°C and heat flux Q=20–8,000kW/m2. The proposed methodology allows us to achieve accurate results, thus it is suitable for the processing of the boiling curve data. The effects of the main parameters on flow boiling curves were analyzed using the ANN. The heat flux increases with increasing inlet subcooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase in the mass flow rate. Pressure plays a predominant role and improves heat transfer in all boiling regions except the film boiling region. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate region. The transient boiling curve lies below the corresponding steady boiling curve.  相似文献   

20.
The estimation of the heat transfer coefficient at the direct-contact condensation of cold water and steam is a very hard task since the phenoma are essentially undsteady and the interface motion is so complicated that an exact estimation of its area is almost impossible. The present study shows the heat transfer coefficient evaluated experimentally by assuming simple interface shapes for complicated surfaces and estimated those through comparison of the numerical analyses to the data of experiments related to the loss of coolant accidents of light water reactors.At chugging, the heat transfer coefficient reached up to 2 × 106W/(m2 K). At condensation oscillation, it ranged between 105–106 W/(m2 K). At a jet region of cold water injected into the steam flow in a pipe or the stationary steam in a vessel, the value was around 2 × 105W/(m2K), and at the surface of stratified flow, it was between 3 × 103–3 × 104W/(m2K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号