首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protocatechuic aldehyde (PA) is a naturally occurring phenolic compound that is a potent inhibitor of mushroom tyrosinase. However, the molecular mechanisms of the anti-melanogenesis activity of PA have not yet been reported. The aim of the current study was to clarify the melanogenesis inhibitory effects of PA and its molecular mechanisms in murine melanoma cells (B16F10). We first predicted the 3D structure of tyrosinase and used a molecular docking algorithm to simulate binding between tyrosinase and PA. These molecular modeling studies calculated a binding energy of −527.42 kcal/mol and indicated that PA interacts with Cu400 and 401, Val283, and His263. Furthermore, PA significantly decreased α-MSH-induced intracellular tyrosinase activity and melanin content in a dose-dependent manner. PA also inhibited key melanogenic proteins such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH-stimulated B16F10 cells. In addition, PA decreased MITF expression levels by inhibiting phosphorylation of cAMP response element-binding protein (CREB) and cAMP-dependent protein kinase A (PKA). These results demonstrate that PA can effectively suppress melanin synthesis in melanoma cells. Taken together, our results show that PA could serve as a potential inhibitor of melanogenesis, and hence could be explored as a possible skin-lightening agent.  相似文献   

2.
Cosmetic ingredients originating from natural resources have garnered considerable attention, and the demand for whitening ingredients is increasing, particularly in Asian countries. Lignin is a natural phenolic biopolymer significantly effective as a natural sunscreen, as its ultraviolet protection efficacy ranges from 250 to 400 nm. However, using different types of lignin as cosmetic ingredients is difficult owing to the heterogeneity of lignin and the lack of in vitro and in vivo safety and efficacy data. Thus, steam-exploded lignin (SEL) was prepared from bamboo, fractionated via successive organic solvent extraction, and sequentially fractionated using ethyl acetate, methanol, and acetone to investigate its potential as a natural whitening material. Gel permeation chromatography showed that the molecular weight of acetone-soluble and acetone-insoluble SEL fractions were the lowest and the highest, respectively. Monomer structures of the four lignin fractions were elucidated using 1H, 13C, and 2D heteronuclear single quantum coherence nuclear magnetic resonance and pyrolysis gas chromatography/mass spectrometry. The antioxidant and tyrosinase inhibition activities of the four fractions were compared. The methanol-soluble SEL fraction (SEL-F2) showed the highest antioxidant activity (except 2,2-diphenyl-1-picrylhydrazyl scavenging activity), and the enzyme inhibition kinetics were confirmed. In this study, the expression pattern of the anti-melanogenic-related proteins by SEL-F2 was confirmed for the first time via the protein kinase A (PKA)/cAMP-response element-binding (CREB) protein signaling pathway in B16F10 melanoma cells. Thus, SEL may serve as a valuable cosmetic whitening ingredient.  相似文献   

3.
4.
The LATS1 kinase has been described as a tumor suppressor in various cancers. However, its role in melanoma has not been fully elucidated. There are several processes involved in tumorigenesis, including melanin production. Melanin content positively correlates with the level of reactive oxygen species (ROS) inside the cell. Accordingly, the purpose of the study was to assess the role of LATS1 in melanogenesis and oxidative stress and its influence on tumor growth. We have knocked down LATS1 in primary melanocytes and melanoma cells and found that its expression is crucial for melanin synthesis, ROS production, and oxidative stress response. We showed that LATS1 ablation significantly decreased the melanogenesis markers’ expression and melanin synthesis in melanocyte and melanoma cell lines. Moreover, silencing LATS1 resulted in enhanced oxidative stress. Reduced melanin content in LATS1 knocked down tumors was associated with increased tumor growth, pointing to melanin’s protective role in this process. The study demonstrated that LATS1 is highly engaged in melanogenesis and oxidative stress control and affects melanoma growth. Our results may find the implications in the diagnosis and treatment of pigmentation disorders, including melanoma.  相似文献   

5.
Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1 cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model. SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38, PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally, SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp. SNA077 could be a novel anti-melanogenic material for skin whitening.  相似文献   

6.
Dieckol is a natural brown algal-derived polyphenol and its cytotoxic potential against various types of cancer cells has been studied. However, the effects of dieckol on autophagy in cancer cells remain unknown. Here, we show that dieckol inhibits the growth of A375 human melanoma cells by inducing apoptotic cell death, which is associated with lysosomal dysfunction and the inhibition of autophagic flux. Dieckol induces autophagosome accumulation by inhibiting autophagosome-lysosome fusion. Moreover, dieckol not only triggers lysosomal membrane permeabilization, followed by an increase in lysosomal pH and the inactivation of cathepsin B and D, but also causes the loss of mitochondrial membrane potential. Importantly, a cathepsin D inhibitor partially relieved dieckol-induced mitochondrial membrane impairment and caspase-mediated apoptosis. Collectively, our findings indicate that dieckol is a novel autophagy inhibitor that induces apoptosis-mediated cell death via lysosomal dysfunction and mitochondrial membrane impairment in A375 human melanoma cells. This suggests the novel potential value of dieckol as a chemotherapeutic drug candidate for melanoma treatment.  相似文献   

7.
8.
The constitutive expression or overactivation of cyclooxygenase (COX) and lipoxygenase (LOX) enzymes results in aberrant metabolism of arachidonic acid and poor prognosis in melanoma. Our aim is to compare the in vitro effects of selective COX-1 (acetylsalicylic acid), COX-2 (meloxicam), 5-LOX (MK-886 and AA-861), 12-LOX (baicalein) and 15-LOX (PD-146176) inhibition in terms of proliferation (SRB assay), mitochondrial viability (MTT assay), caspase 3-7 activity (chemiluminescent assay), 2D antimigratory (scratch assay) and synthesis of eicosanoids (EIA) in the B16F10 cell line (single treatments). We also explore their combinatorial pharmacological space with dacarbazine and temozolomide (median effect method). Overall, our results with single treatments show a superior cytotoxic efficacy of selective LOX inhibitors over selective COX inhibitors against B16F10 cells. PD-146176 caused the strongest antiproliferation effect which was accompanied by cell cycle arrest in G1 phase and an >50-fold increase in caspases 3/7 activity. When the selected inhibitors are combined with the antineoplastic drugs, only meloxicam provides clear synergy, with LOX inhibitors mostly antagonizing. These apparent contradictions between single and combination treatments, together with some paradoxical effects observed in the biosynthesis of eicosanoids after FLAP inhibition in short term incubations, warrant further mechanistical in vitro and in vivo scrutiny.  相似文献   

9.
More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation.  相似文献   

10.
11.
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.  相似文献   

12.
13.
In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 μM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 μM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from −0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient.  相似文献   

14.
Cutaneous melanoma is often resistant to therapy due to its high plasticity, as well as its ability to metabolise chemotherapeutic drugs. Sphingolipid signalling plays a pivotal role in its progression and metastasis. One of the ways melanoma alters sphingolipid rheostat is via over-expression of lysosomal acid ceramidase (AC), which catalyses the hydrolysis of pro-apoptotic long-chain ceramides into sphingosine and fatty acid. In this report, we examine the role of acid ceramidase in maintaining cellular homeostasis through the regulation of autophagy and mitochondrial activity in melanoma cell lines. We show that under baseline conditions, wild-type melanoma cells had 3-fold higher levels of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3 II), compared to AC-null cells. This difference was further magnified after cell starvation. Moreover, we noticed autophagy impairment in A375 AC-null cells, possibly due to local accumulation of non-metabolized ceramides. Nonetheless, we observed that AC-null cells exhibited a significant increase in mitochondrial membrane potential compared to control cells. Consistent with this observation, we found that, after total starvation, ~30% of AC-null cells undergo apoptosis compared to ~6% of wild-type cells. As expected, AC transfection restored viability in A375 AC-null cells. Together, these findings suggest that AC-null melanoma cells change and adapt their metabolism to survive in the absence of AC, although in a way that does not allow them to cope with the stress of nutrient deprivation.  相似文献   

15.
Cervical carcinoma (CC) is the second most prevalent gynecologic cancer in females across the world. To obtain a better understanding of the mechanisms underlying the development of CC, high-resolution label-free mass spectrometry was performed on CC and adjacent normal tissues from eight patients. A total of 2631 proteins were identified, and 46 significant differently expressed proteins (DEPs) were found between CC and normal tissues (p < 0.01, fold change >10 or <0.1). Ingenuity pathway analysis revealed that the majority of the proteins were involved in the regulation of eIF4 and p70S6K signaling and mTOR signaling. Among 46 DEPs, Integrinβ6 (ITGB6), PPP1CB, TMPO, PTGES3 (P23) and DTX3L were significantly upregulated, while Desmin (DES) was significantly downregulated in CC tissues compared with the adjacent normal tissues. In in vivo and in vitro experiments, DTX3L knockdown suppressed CC cell proliferation, migration, invasion and xenograft tumorigenesis, and enhanced cell apoptosis. Combination of silencing DTX3L and cisplatin treatment induced higher apoptosis percentage compared to cisplatin treatment alone. Moreover, DTX3L silencing inhibited the PI3K/AKT/mTOR signal pathway. Thus, our results suggested DTX3L could regulate CC progression through the PI3K/AKT/mTOR signal pathway and is potentially a novel biomarker and therapeutic target for CC.  相似文献   

16.
Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.  相似文献   

17.
CC-115 is a dual inhibitor of the mechanistic target of rapamycin (mTOR) kinase and the DNA-dependent protein kinase (DNA-PK) that is currently being studied in phase I/II clinical trials. DNA-PK is essential for the repair of DNA-double strand breaks (DSB). Radiotherapy is frequently used in the palliative treatment of metastatic melanoma patients and induces DSBs. Melanoma cell lines and healthy-donor skin fibroblast cell lines were treated with CC-115 and ionizing irradiation (IR). Apoptosis, necrosis, and cell cycle distribution were analyzed. Colony forming assays were conducted to study radiosensitizing effects. Immunofluorescence microscopy was performed to determine the activity of homologous recombination (HR). In most of the malign cell lines, an increasing concentration of CC-115 resulted in increased cell death. Furthermore, strong cytotoxic effects were only observed in malignant cell lines. Regarding clonogenicity, all cell lines displayed decreased survival fractions during combined inhibitor and IR treatment and supra-additive effects of the combination were observable in 5 out of 9 melanoma cell lines. CC-115 showed radiosensitizing potential in 7 out of 9 melanoma cell lines, but not in healthy skin fibroblasts. Based on our data CC-115 treatment could be a promising approach for patients with metastatic melanoma, particularly in the combination with radiotherapy.  相似文献   

18.
B16-F1 melanoma cells have often been used as a model to investigate melanogenesis, but the evidence that melanosome biogenesis and transport occur by the same mechanisms in normal melanocytes and B16-F1 cells is insufficient. In this study, we established knockout B16-F1 cells for each of several key factors in melanogenesis, i.e., tyrosinase (Tyr), Hps4, Rab27A, and Rab32·Rab38 (Rab32/38), and then compared their phenotypes with the phenotypes of corresponding mutant mouse melanocyte cell lines, i.e., melan-c, melan-le, melan-ash, and Rab32-deficient melan-cht cells, respectively. The results showed that Tyr and Rab27A are also indispensable for melanin synthesis and peripheral melanosome distribution, respectively, in B16-F1 cells, but that Hps4 or its downstream targets Rab32/38 are not essential for Tyr transport in B16-F1 cells, suggesting the existence of a Rab32/38-independent Tyr transport mechanism in B16-F1 cells. We then performed comprehensive knockdown screening of Rab small GTPases and identified Rab10 and Rab24, previously uncharacterized Rabs in melanocytes, as being involved in Tyr transport under Rab32/38-null conditions. Our findings indicate a difference between the Tyr transport mechanism in melanocytes and B16-F1 cells in terms of Rab32/38-dependency and a limitation in regard to using melanoma cells as a model for melanocytes, especially when investigating the mechanism of endosomal Tyr transport.  相似文献   

19.
20.
The increased concern regarding the reduction in female fertility and the impressive numbers of women undergoing fertility treatment support the existence of environmental factors beyond inappropriate programming of developing ovaries. Among these factors are pyrethroids, which are currently some of the most commonly used pesticides worldwide. The present study was performed to investigate the developmental effects of the pyrethroid-based insecticide allethrin on ovarian function in rat offspring in adulthood. We mainly focused on the roles of oxidative stress, apoptosis, autophagy and the related pathways in ovarian injury. Thirty-day-old Wistar albino female rats were intragastrically administered 0 (control), 34.2 or 68.5 mg/kg body weight allethrin after breeding from Day 6 of pregnancy until delivery. We found that allethrin-induced ovarian histopathological damage was accompanied by elevations in oxidative stress and apoptosis. Interestingly, the number of autophagosomes in allethrin-treated ovaries was higher, and this increase was correlated with the upregulated expression of genes and proteins related to the autophagic marker LC-3. Furthermore, allethrin downregulated the expression of PI3K, AKT and mTOR in allethrin-treated ovaries compared with control ovaries. Taken together, the findings of this study suggest that exposure to the pyrethroid-based insecticide allethrin adversely affects both the follicle structure and function in rat offspring during adulthood. Specifically, allethrin can induce excessive oxidative stress and defective autophagy-related apoptosis, probably through inactivation of the PI3K/AKT/mTOR signaling pathway, and these effects may contribute to ovarian dysfunction and impaired fertility in female offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号