首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted inhalation and intratracheal instillation studies of zinc oxide (ZnO) nanoparticles in order to examine their pulmonary toxicity. F344 rats were received intratracheal instillation at 0.2 or 1 mg of ZnO nanoparticles with a primary diameter of 35 nm that were well-dispersed in distilled water. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed at three days, one week, one month, three months, and six months after the instillation. As the inhalation study, rats were exposed to a concentration of inhaled ZnO nanoparticles (2 and 10 mg/m3) for four weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were analyzed at three days, one month, and three months after the end of the exposure. In the intratracheal instillation study, both the 0.2 and the 1.0 mg ZnO groups had a transient increase in the total cell and neutrophil count in the BALF and in the expression of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in the BALF. In the inhalation study, transient increases in total cell and neutrophil count, CINC-1,-2 and HO-1 in the BALF were observed in the high concentration groups. Neither of the studies of ZnO nanoparticles showed persistent inflammation in the rat lung, suggesting that well-dispersed ZnO nanoparticles have low toxicity.  相似文献   

2.

Background

In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2–1.0 mg) and inhalation exposures (exposure concentration: 0.32–10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure.

Results

Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure.

Conclusion

These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.
  相似文献   

3.

Background

We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week) for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs) were examined in rat lungs in both studies.

Results

In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group.

Conclusion

These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.  相似文献   

4.
5.

Background  

Nanoparticles are characterized by having a high surface area per mass. Particulate surface area has been reported to play an important role in determining the biological activity of nanoparticles. However, recent reports have questioned this relationship. This study was conducted to determine whether mass of particles or surface area of particles is the more appropriate dose metric for pulmonary toxicity studies. In this study, rats were exposed by intratracheal instillation to various doses of ultrafine and fine carbon black. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium). In an additional study, the pulmonary responses to instillation of ultrafine carbon black were compared to equivalent particle surface area doses of ultrafine titanium dioxide.  相似文献   

6.
This work studies the relationship between lung inflammation caused by nanomaterials and surfactant protein D (SP-D) kinetics and investigates whether SP-D can be a biomarker of the pulmonary toxicity of nanomaterials. Nanomaterials of nickel oxide and cerium dioxide were classified as having high toxicity, nanomaterials of two types of titanium dioxides and zinc oxide were classified as having low toxicity, and rat biological samples obtained from 3 days to 6 months after intratracheal instillation of those nanomaterials and micron-particles of crystalline silica were used. There were different tendencies of increase between the high- and low-toxicity materials in the concentration of SP-D in bronchoalveolar-lavage fluid (BALF) and serum and in the expression of the SP-D gene in the lung tissue. An analysis of the receiver operating characteristics for the toxicity of the nanomaterials by SP-D in BALF and serum showed a high accuracy of discrimination from 1 week to 3 or 6 months after exposure. These data suggest that the differences in the expression of SP-D in BALF and serum depended on the level of lung inflammation caused by the nanomaterials and that SP-D can be biomarkers for evaluating the pulmonary toxicity of nanomaterials.  相似文献   

7.

Background  

The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-). We studied the effects instillation or inhalation Printex 90 of carbon black (CB) and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL) fluid.  相似文献   

8.

Background

The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures.

Results

Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers.

Conclusions

Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost-effective platform to evaluate the potential of engineered high aspect ratio nanomaterials, including carbon nanotubes, nanofibers, nanorods and metallic nanowires, to induce granulomas following inhalation.  相似文献   

9.

Background  

There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure.  相似文献   

10.
Ceria nanoparticles (nano-ceria) have recently gained a wide range of applications, which might pose unwanted risks to both the environment and human health. The greatest potential for the environmental discharge of nano-ceria appears to be in their use as a diesel fuel additive. The present study was designed to explore the pulmonary toxicity of nano-ceria in mice after a single exposure via intratracheal instillation. Two types of nano-ceria with the same distribution of a primary size (3–5 nm), but different redox activity, were used: Ceria-p, synthesized by a precipitation route, and Ceria-h, synthesized by a hydrothermal route. Both Ceria-p and Ceria-h induced oxidative stress, inflammatory responses and cytotoxicity in mice, but their toxicological profiles were quite different. The mean size of Ceria-p agglomerates was much smaller compared to Ceria-h, thereby causing a more potent acute inflammation, due to their higher number concentration of agglomerates and higher deposition rate in the deep lung. Ceria-h had a higher reactivity to catalyzing the generation of reactive oxygen species (ROS), and caused two waves of lung injury: bronchoalveolar lavage (BAL) inflammation and cytotoxicity in the early stage and redox-activity-evoked lipid peroxidation and pro-inflammation in the latter stage. Therefore, the size distribution of ceria-containing agglomerates in the exhaust, as well as their surface chemistry are essential characteristics to assess the potential risks of using nano-ceria as a fuel additive.  相似文献   

11.

Background

Little is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2.

Methods

Mice received a single intratracheal instillation of 18, 54 and 162 μg of NanoTiO2 or 54, 162 and 486 μg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control.

Results

There was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points.

Conclusions

Pulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.  相似文献   

12.

Systematic manipulation of furnace temperature, residence time, and dilution air was used to study the formation of submicrometer nickel oxide (NiO) or nickel sulfate hexahydrate (NiSO 4 ) particles in a horizontal, laminar flow tube reactor. Chemical speciation, morphological changes, and aerosol size distributions were measured using x-ray diffraction, transmission electron microscopy, and diffusion mobility analysis, respectively. A technique was developed to use these submicrometer nickel species aerosols in animal inhalation studies. Representative aerosols were administered to C57BL/6J mice by intratracheal instillation or whole-body inhalation to study the effect of submicrometer particles on pulmonary injury. For instillation, NiO particles having a geometric mass mean diameter ( d pg ) of 40, 300, and 1000 nm were generated by pyrolysis of nickel nitrate hexahydrate aerosol suspended in physiological saline and administered at a dose corresponding to 3, 30, 300, or 3000 w g Ni/kg body weight. Bronchoalveolar lavage fluid was collected 18 hr after instillation and analyzed for total and differential cell counts, cell viability, and total protein. For inhalation experiments, an acute, whole-body exposure was conducted, exposing mice to 6, 24, 48, or 72 hr of continuous submicrometer NiO aerosol ( d pg = 50 nm; 340 w g Ni/m 3 ) or 24, 48, or 72 hr of NiSO 4 aerosol ( d pg = 60 nm; 420 w g Ni/m 3 ; d pg = 250 nm; 480 w g Ni/m 3 ). Exposure to NiO produced no significant lung injury when either instilled or inhaled, whereas inhaled NiSO 4 caused significant increases in protein content and neutrophil count in lavage following 48 or 72 hr of exposure. These findings suggest that submicrometer NiSO4 aerosols generated in combustion processes are more acutely injurious to the lung than an equivalent mass of NiO aerosol.  相似文献   

13.

Background  

The production and use of nanoparticles is growing rapidly due to the unique physical and chemical properties associated with their nano size and large surface area. Since nanoparticles have unique physicochemical properties, their bioactivity upon exposure to workers or consumers is of interest. In this study, the issue of what dose metric (mass dose versus surface area dose) is appropriate for toxicological studies has been addressed. Rats were exposed by intratracheal instillation to various doses of ultrafine or fine TiO2. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium) basis.  相似文献   

14.
The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.  相似文献   

15.
(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1β) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung’s α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice’s ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.  相似文献   

16.
Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.  相似文献   

17.
An increasing number of studies have been devoted to studying the respiratory toxicity of carbon nanomaterials, but little information is known, thus far, on the biodistribution of these nanomaterials after inhalation or intratracheal instillation. We synthesized and labeled a polyhydroxylated derivative of fullerene C60(OH)x (x = 22, 24) with 99mTc. With single photon emission computed tomography imaging and 〈gamma〉-ray counting techniques, the biodistribution of 99mTc-C60(OH)x in Sprague-Dawley rats after intratracheal instillation was studied. It was found that, besides the highest retention in the lung, 99mTc-C60(OH)x is distributed mainly in the liver, bone, and spleen, with no uptake found in brain. The long-term retention in the lung and the very fast clearance from the blood revealed a transient characteristic of penetrating the alveolar-capillary barrier. The dimensions and size distribution, as well as in vivo aggregation of 99mTc-C60(OH)x, may affect the capability and kinetic process of penetrating the alveolar-capillary barrier. The results provide guidance for further study of the respiratory toxicity of carbon nanomaterials.  相似文献   

18.
Background: Mesenchymal stem cell (MSC) intervention has been associated with lung protection. We attempted to determine whether mouse gingival-derived mesenchymal stem cells (GMSCs) could protect against bleomycin-induced pulmonary fibrosis. Methods: Mice were divided into three groups: control (Con), bleomycin (Bl), and bleomycin + MSCs (Bl + MSCs). Mice were treated with 5 mg/kg bleomycin via transtracheal instillation to induce pulmonary fibrosis. We assessed the following parameters: histopathological severity of injury in the lung, liver, kidney, and aortic tissues; the degree of pulmonary fibrosis; pulmonary inflammation; pulmonary oedema; profibrotic factor levels in bronchoalveolar lavage fluid (BALF) and lung tissue; oxidative stress-related indicators and apoptotic index in lung tissue; and gene expression levels of IL-1β, IL-8, TNF-α, lysophosphatidic acid (LPA), lysophosphatidic acid receptor 1 (LPA1), TGF-β, matrix metalloproteinase 9 (MMP-9), neutrophil elastase (NE), MPO, and IL-10 in lung tissue. Results: GMSC intervention attenuated bleomycin-induced pulmonary fibrosis, pulmonary inflammation, pulmonary oedema, and apoptosis. Bleomycin instillation notably increased expression levels of the IL-1β, IL-8, TNF-α, LPA, LPA1, TGF-β, MMP-9, NE, and MPO genes and attenuated expression levels of the IL-10 gene in lung tissue, and these effects were reversed by GMSC intervention. Bleomycin instillation notably upregulated MDA and MPO levels and downregulated GSH and SOD levels in lung tissue, and these effects were reversed by GMSC intervention. GMSC intervention prevented upregulation of neutrophil content in the lung, liver, and kidney tissues and the apoptotic index in lung tissue. Conclusions: GMSC intervention exhibits anti-inflammatory and antioxidant capacities. Deleterious accumulation of neutrophils, which is reduced by GMSC intervention, is a key component of bleomycin-induced pulmonary fibrosis. GMSC intervention impairs bleomycin-induced NE, MMP-9, LPA, APL1, and TGF-β release.  相似文献   

19.
Respiratory diseases are the cause of millions of deaths annually around the world. Despite the recent growth of our understanding of underlying mechanisms contributing to the pathogenesis of lung diseases, most therapeutic approaches are still limited to symptomatic treatments and therapies that only delay disease progression. Several clinical and preclinical studies have suggested stem cell (SC) therapy as a promising approach for treating various lung diseases. However, challenges such as the potential tumorigenicity, the low survival rate of the SCs in the recipient body, and difficulties in cell culturing and storage have limited the applicability of SC therapy. SC-derived extracellular vesicles (SC-EVs), particularly SC-derived exosomes (SC-Exos), exhibit most therapeutic properties of stem cells without their potential drawbacks. Similar to SCs, SC-Exos exhibit immunomodulatory, anti-inflammatory, and antifibrotic properties with the potential to be employed in the treatment of various inflammatory and chronic respiratory diseases. Furthermore, recent studies have demonstrated that the microRNA (miRNA) content of SC-Exos may play a crucial role in the therapeutic potential of these exosomes. Several studies have investigated the administration of SC-Exos via the pulmonary route, and techniques for SCs and SC-Exos delivery to the lungs by intratracheal instillation or inhalation have been developed. Here, we review the literature discussing the therapeutic effects of SC-Exos against respiratory diseases and advances in the pulmonary route of delivery of these exosomes to the damaged tissues.  相似文献   

20.
Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 μg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号