首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a successful implementation of the virtual crack closure integral method to calculate the stress intensity factors of an interfacial crack. The present method would compute the mixed-mode stress intensity factors from the mixed-mode energy release rates of the interfacial crack, which are easily obtained from the crack opening displacements and the nodal forces at and ahead of the crack tip, in a finite element model. The simple formulae which relate the stress intensity factors to the energy release rates are given in three separate categories: an isotropic bimaterial continuum, an orthotropic bimaterial continuum, and an anisotropic bimaterial continuum. In the example of a central crack in a bimaterial block under the plane strain condition, comparisons are made with the exact solution to determine the accuracy and efficiency of the numerical method. It was found that the virtual crack closure integral method does lead to very accurate results with a relatively coarse finite element mesh. It has also been shown that for an anisotropic interfacial crack under the generalized plane strain condition, the computed stress intensity factors using the virtual crack closure method compared favorably with the results using the J integral method applied to two interacting crack tip solutions. In order for the stress intensity factors to be used as physical variables, the characteristic length for the stress intensity factors must be properly defined. A study was carried out to determine the effects of the characteristic length on the fracture criterion based the mixed-mode stress intensity factors. It was found that the fracture criterion based on the quadratic mixture of the normalized stress intensity factors is less sensitive to the changes in characteristic length than the fracture criterion based on the total energy release rate along with the phase angle.This work has been supported by ONR, with Dr. Y. Rajapakse as the program official.  相似文献   

2.
Maximum stress intensity factors of a surface crack usually appear at the deepest point of the crack, or a certain point along crack front near the free surface depending on the aspect ratio of the crack. However, generally it has been difficult to obtain smooth distributions of stress intensity factors along the crack front accurately due to the effect of corner point singularity. It is known that the stress singularity at a corner point where the front of 3 D cracks intersect free surface is depend on Poisson's ratio and different from the one of ordinary crack. In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3-D semi-elliptical surface crack in a semi-infinite body under mixed mode loading. The body force method is used to formulate the problem as a system of singular integral equations with singularities of the form r −3 using the stress field induced by a force doublet in a semi-infinite body as fundamental solution. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately. Distributions of stress intensity factors are indicated in tables and figures with varying the elliptical shape and Poisson's ratio.  相似文献   

3.
An analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening and sliding modes) using complex functions theory is presented. The crack is in infinite medium and subjected to the plane harmonic waves. The basis of the method is grounded on solving the two‐dimensional wave equations in the frequency domain and complex plane using mapping technique. In this domain, solution of the resulting partial differential equations is found in the series of the Hankel functions with unknown coefficients. Applying the boundary conditions of the crack, these coefficients are calculated. After solving the wave equations, the stress and displacement fields, also the J‐integrals are obtained. Finally using the J‐integrals, dynamic stress intensity factors are calculated. Numerical results including the values of dynamic stress intensity factors for a crack in an infinite medium subjected to the dilatation and shear harmonic waves are presented.  相似文献   

4.
This paper and its companion are devoted to the study of crack kinking from some small pre-existing crack originating from a notch root (the notch root radius being zero). Both the notch boundaries and the initial crack are allowed to be curved; also, the geometry of the body and the loading are totally arbitrary. The ingredients required are knowledge of the stress intensity factors at the initial crack tip and use of a suitable mixed mode propagation criterion. This paper is devoted to the first point, and more specifically to establishing the general (that is, not yet fully explicit) form of the formulae giving these stress intensity factors. The method used is based on changes of scale (homogeneity properties of the equations of elasticity) on the one hand, and on continuity of the displacement and stresses at a given, fixed point with respect to the crack length on the other hand. The formulae derived for the stress intensity factors at the tip of the small crack are of universal value: they apply to any situation, whatever the geometry of the body, the notch and the crack and whatever the loading, the stress intensity factors depending always only upon the `stress intensity factor of the notch' (the multiplicative coefficient of the singular stress field near the notch root in the absence of the crack), the length of the crack, the aperture angle of the notch and the angle between its bisecting line and the direction of the crack.  相似文献   

5.
Hold-time effects on high temperature fatigue crack growth in Udimet 700   总被引:1,自引:0,他引:1  
Crack growth behaviour under creep-fatigue conditions in Udimet 700 has been studied, and the crack growth data were analysed in terms of the stress intensity factor as well as theJ-integral parameter. Crack growth behaviour is shown to depend on the initial stress intensity level and the duration of hold-time at the peak load. For stress intensities that are lower than the threshold stress intensity for creep crack growth, the crack growth rate decreases with increase in hold time even on a cycle basis, da/dN, to the extent that complete crack arrest could occur at prolonged hold times. This beneficial creep-fatigue interaction is attributed to the stress relaxation due to creep. For stress intensities greater than the threshold stress intensity for creep crack growth, the growth rate on a cycle basis increases with increase in hold time. For the conditions where there is no crack arrest, the crack growth appears to be essentially cycle-dependent in the low stress intensity range and time-dependent in the high stress intensity range. Both the stress intensity factor and theJ-integral are shown to be valid only in a limited range of loads and hold-times where crack growth rate increases continuously.  相似文献   

6.
The elastodynamic response of an infinite orthotropic material with a semi-infinite crack propagating at constant speed under the action of concentrated loads on the crack faces is examined. Solution for the stress intensity factor history around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms along with the Wiener-Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form solution of the dynamic stress intensity factor. It is found that the stress intensity factor for the propagating crack is proportional to the stress intensity factor for a stationary crack by a factor similar to the universal function k(v) from the isotropic case. Results are presented for orthotropic materials as well as for the isotropic case.  相似文献   

7.
The standard definition of the J integral leads to a path dependent value in the presence of a residual stress field, and this gives rise to numerical difficulties in numerical modelling of fracture problems when residual stresses are significant. In this work, a path independent J definition for a crack in a residual stress field is obtained. A number of crack geometries containing residual stresses have been analysed using the finite element method and the results demonstrate that the modified J shows good path-independence which is maintained under a combination of residual stress and mechanical loading. It is also shown that the modified J is equivalent to the stress intensity factor, K, under small scale yielding conditions and provides the intensity of the near crack tip stresses under elastic-plastic conditions. The paper also discusses two issues linked to the numerical modelling of residual stress crack problems-the introduction of a residual stress field into a finite element model and the introduction of a crack into a residual stress field.  相似文献   

8.
Stress intensity factor solutions for a cracked bolt loaded by a nut   总被引:2,自引:0,他引:2  
This paper presents the calculation of stress intensity factor (K) solutions for surface cracks in the thread ground of bolts subjected to axial loading directly applied by the nut. The stress-strain computations have been done by means of the finite element method with quarter-point singular isoparametric elements along the crack front. The stress intensity factor is calculated through the stiffness derivative method, by using a virtual crack extension technique to compute the energy release rate. Two modifications are made to improve the accuracy of the results: the displacement not only of the main node, but also of the quarter-point nodes located in the normal plane and the adjacent nodes in the crack line, avoiding both the change of the singularity and the crack curving. The results show that direct loading on the thread flank by a nut increases the stress intensity factor. This effect decreases with the crack length. For the deepest circular cracks, however, nut loading relaxes the K-value, mainly at the crack surface.  相似文献   

9.
Investigations were performed for the round-ended straight attachment lug with a single crack emanating from the hole with the weight function method. The weight functions, covering the geometries from W/D=1.5 to W/D=4.0, were generated from the results obtained with a boundary element method using the approximate weight function technique. The results have been given both in the form of analytical weight functions and tabulated dimensionless stress intensity factors for simple normalized powers of the crack line loading. This is a simple straight forward procedure to calculate stress intensity factors once the crack line loading is approximated by a polynomial. The present method is also valid for deriving stress intensity factors and weight functions for general crack configurations.  相似文献   

10.
In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D inclined semi-elliptical surface crack in a semi-infinite body under tension. The stress field induced by displacement discontinuities in a semi-infinite body is used as the fundamental solution. Then, the problem is formulated as a system of integral equations with singularities of the form r –3. In the numerical calculation, the unknown body force doublets are approximated by the product of fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately for various geometrical conditions. The effects of inclination angle, elliptical shape, and Poisson's ratio are considered in the analysis. Crack mouth opening displacements are shown in figures to predict the crack depth and inclination angle. When the inclination angle is 60 degree, the mode I stress intensity factor F I has negative value in the limited region near free surface. Therefore, the actual crack surface seems to contact each other near the surface.  相似文献   

11.
New numerical methods were presented for stress intensity factor analyses of two-dimensional interfacial crack between dissimilar anisotropic materials subjected to thermal stress. The virtual crack extension method and the thermal M-integral method for a crack along the interface between two different materials were applied to the thermoelastic interfacial crack in anisotropic bimaterials. The moving least-squares approximation was used to calculate the value of the thermal M-integral. The thermal M-integral in conjunction with the moving least-squares approximation can calculate the stress intensity factors from only nodal displacements obtained by the finite element analysis. The stress intensity factors analyses of double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load were demonstrated. Excellent agreement was achieved between the numerical results obtained by the present methods and the exact solution. In addition, the stress intensity factors of double edge cracks in jointed dissimilar anisotropic semi-infinite plates subjected to thermal loads were analyzed. Their results appear reasonable.  相似文献   

12.
In this paper a singular integral equation method is applied to calculate the distribution of stress intensity factor along the crack front of a 3D rectangular crack. The stress field induced by a body force doublet in an infinite body is used as the fundamental solution. Then, the problem is formulated as an integral equation with a singularity of the form of r –3. In solving the integral equation, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function, which expresses stress singularity along the crack front in an infinite body. The calculation shows that the present method gives smooth variations of stress intensity factors along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary.  相似文献   

13.
In this paper a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D surface crack. Stress field induced by body force doublet in a semi infinite body is used as a fundamental solution. Then the problem is formulated as an integral equation with a singularity of the form of r -3. In solving the integral equations, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function; that is, the exact density distribution to make an elliptical crack in an infinite body. The calculation shows that the present method gives the smooth variation of stress intensity factors along the crack front and crack opening displacement along the crack surface for various aspect ratios and Poisson's ratio. The present method gives rapidly converging numerical results and highly satisfactory boundary conditions throughout the crack boundary.  相似文献   

14.
A two-dimensional boundary element method for analysis of closed or partially closed cracks under normal and frictional forces is developed. The single domain dual formulation is used. As a contact problem is non-linear due to the friction phenomena at the crack interface and also because of the boundary conditions which may change during the loading, it is formulated in an incremental and iterative fashion. The stress intensity factors are calculated with the J-integral method. Also crack growth is considered. Several benchmark cases have been analysed to verify the results given by the method. The stress intensity factors and crack paths calculated are similar to those given in the literature. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Interface crack in periodically layered bimaterial composite   总被引:1,自引:0,他引:1  
A directional crack growth prediction in a compressed homogenous elastic isotropic material under plane strain conditions is considered. The conditions at the parent crack tip are evaluated for a straight stationary crack. Remote load is a combined biaxial compressive normal stress and pure shear. Crack surfaces are assumed to be frictionless and to remain closed during the kink formation wherefore the mode I stress intensity factor K I is vanishing. Hence the mode II stress intensity factor K II remains as the single stress intensity variable for the kinked crack. An expression for the local mode II stress intensity factor k 2 at the tip of a straight kink has been calculated numerically with an integral equation using the solution scheme proposed by Lo (1978) and refined by He and Hutchinson (1989). The confidence of the solution is strengthened by verifications with a boundary element method and by particular analytical solutions. The expression has been found as a function of the mode II stress intensity factor K II of the parent crack, the direction and length of the kink, and the difference between the remote compressive normal stresses perpendicular to, and parallel with, the plane of the parent crack. Based on the expression, initial crack growth directions have been suggested. At a sufficiently high non-isotropic compressive normal stress, so that the crack remains closed, the crack is predicted to extend along a curved path that maximizes the mode II stress intensity factor k 2. Only at an isotropic remote compressive normal stress the crack will continue straight ahead without change of the direction. Further, an analysis of the shape of the crack path has revealed that the propagation path is, according the model, required to be described by a function y=cx , where the exponent is equal to 3/2. In that case, when =3/2, predicts the analytical model a propagation path that is self-similar (i.e. the curvature c is independent of any length of a crack extension), and which can be described by a function of only the mode II stress intensity factor K II at the parent crack tip and the difference between the remote compressive normal stress perpendicular to, and parallel with, the parent crack plane. Comparisons with curved shear cracks in brittle materials reported in literature provide limited support for the model discussed.  相似文献   

16.
A useful method is proposed to analyze a short interfacial crack emanating from the corner of a rectangular inclusion. We first analyze the singular stress field (and the corresponding singularity intensity factor H) without the crack in an infinite medium having the rectangular inclusion. The singular stress field (and the corresponding stress intensity factor K) at the tip of the short interfacial crack lying in the interface of the rectangular inclusion is also analyzed, giving the relation between H and K. With this relation, the stress intensity factor K is easily obtained for the case of a short interfacial crack from the corner of a different rectangular inclusion with different external boundary. This method is based on the assumption that the singular K-field is embedded in another singular H-field, which is much smaller than the specimen geometry. To meet the assumption, it is found here that the eigenfunction corresponding to the next smallest eigenvalue of the singular H-field has to be considered. An example is presented to show the usefulness of the present method, where a short interfacial crack from the corner of a rectangular lead frame in epoxy compound used in electronic packaging is analyzed. It is found that the result of the present method is in good agreement with that of the well-known method.  相似文献   

17.
This paper presents an extension of the dual boundary element method to analysis of crack growth in plates loaded in combine bending and tension. Five stress intensity factors, two for membrane behaviour and three for shear deformable plate bending are computed using the J-Integral technique. Crack growth processes are simulated with an incremental crack extension analysis based on the maximum principal stress criterion. The method is considered effective since no remeshing is required and the crack extension is modelled by adding new boundary elements to the previous crack boundaries. Several incremental crack growth analysis for different configurations and loadings are presented.  相似文献   

18.
This paper presents the application of weight function method for the calculation of stress intensity factors (K) and T‐stress for surface semi‐elliptical crack in finite thickness plates subjected to arbitrary two‐dimensional stress fields. New general mathematical forms of point load weight functions for K and T have been formulated by taking advantage of the knowledge of a few specific weight functions for two‐dimensional planar cracks available in the literature and certain properties of weight function in general. The existence of the generalised forms of the weight functions simplifies the determination of specific weight functions for specific crack configurations. The determination of a specific weight function is reduced to the determination of the parameters of the generalised weight function expression. These unknown parameters can be determined from reference stress intensity factor and T‐stress solutions. This method is used to derive the weight functions for both K and T for semi‐elliptical surface cracks in finite thickness plates, covering a wide range of crack aspect ratio (a/c) and relative depth (a/t) at any point along the crack front. The derived weight functions are then validated against stress intensity factor and T‐stress solutions for several linear and nonlinear two‐dimensional stress distributions. These derived weight functions are particularly useful for the development of two‐parameter fracture and fatigue models for surface cracks subjected to fluctuating nonlinear stress fields, such as these resulting from surface treatment (shot peening), stress concentration or welding (residual stress).  相似文献   

19.
This article provides a comprehensive theoretical treatment of the interaction between an arbitrarily located and oriented microdefect and a finite interfacial crack under antiplane loading. The analysis is based upon the use of an integral transform method and a self-consistent iterative superposition technique. The closed form expression for the resulting stress intensity factors at the interfacial crack are obtained by solving the appropriate singular integral equations, using Chebyshev polynomials. Typical examples are provided to show the effect of the location and orientation of the microdefect and the material combination upon the stress intensity factor of the interfacial crack.  相似文献   

20.
This paper investigates a numerical solution for multiple crack problem in an infinite plate under remote compression. The influence of friction is taken into account. In the first step of the solution, we make a full contact assumption on the crack faces. The full contact assumption means that one component of the dislocation distribution vanishes, and the first mode stress intensity factors (K 1) at the crack tips become zero. On the above-mentioned assumption, the problem can be solved by using integral equation method, and the second mode stress intensity factors (K 2) at the crack tips can be evaluated. Meantime, after solving the integral equation the normal contact stress on the crack faces can be evaluated. The next step is to examine the full contact assumption. If the contact stresses on the crack faces are definitely negative, the solution is true. Otherwise, the obtained solution is not true. It is found from present study that in most cases the full contact condition is satisfied, and only in a few cases the full contact condition is violated. Numerical examples are given. It is found that the friction can lower the stress intensity factors at crack tips in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号