共查询到20条相似文献,搜索用时 0 毫秒
1.
Replacing alfalfa silage with tannin-containing birdsfoot trefoil silage in total mixed rations for lactating dairy cows 总被引:2,自引:0,他引:2
G.A. Broderick J.H. Grabber R.E. Muck U.C. Hymes-Fecht 《Journal of dairy science》2017,100(5):3548-3562
Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages. 相似文献
2.
Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows 总被引:3,自引:0,他引:3
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet. 相似文献
3.
Performance of lactating dairy cows fed alfalfa or red clover silage as the sole forage 总被引:1,自引:0,他引:1
Three Latin square trials, with 20 (two trials) or 24 (one trial) multiparous lactating Holstein cows (four in each trial with ruminal cannulae), compared the feeding value of red clover and alfalfa silages harvested over 3 yr. Overall, the forages contained similar amounts of neutral detergent fiber and acid detergent fiber; however, red clover silage contained more hemicellulose, less ash and crude protein (CP), and only 67% as much nonprotein N, as a proportion of total N, as did alfalfa silage. Diets were formulated with equal dry matter (DM) from alfalfa or red clover silage and contained on average 65% forage, 33 or 30% ground high moisture ear corn, and 0 or 3% low soluble fishmeal (DM basis). Diets fed in the Latin squares contained (mean dietary CP): 1) alfalfa (17.8% CP); 2) red clover (15.1% CP); 3) alfalfa plus fishmeal (19.6% CP); and 4) red clover plus fishmeal (16.9% CP). Although performance varied somewhat among trials, overall statistical analysis showed that replacing alfalfa with red clover reduced yields of milk, fat-corrected milk, fat, protein, lactose, and SNF; these effects were related to the 1.2 kg/d lower DM intake for cows fed red clover. Replacing alfalfa with red clover improved body weight gain and reduced concentrations of milk and blood urea and ruminal NH3. Apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose all were greater when red clover was fed. There were no significant forage x fishmeal interactions for DM intake and yield of milk and milk components, indicating that supplementation with rumen undegradable protein gave similar increases in production on both forages. Net energy of lactation (NE(L)), estimated from maintenance, mean milk yield, and body weight change, in alfalfa and red clover silage were, respectively, 1.25 and 1.38 Mcal NE(L)/kg of DM, indicating 10% greater NE(L) in red clover. 相似文献
4.
Forty-eight mid-lactation Holstein cows were used in a 6-wk completely randomized block design trial with a 4 × 3 factorial arrangement of treatments to determine the effects of feeding different proportions of corn silage and ryegrass silage with supplemental ground corn (GC), steam-flaked corn (SFC), and hominy feed (HF) on the performance of lactating dairy cows. Forage provided 49% of the dietary dry matter in the experimental diets, which were formulated to meet National Research Council requirements. Ryegrass silage provided 100, 75, 50, or 25% of the total forage dry matter, with corn silage supplying the remainder. There were no interactions between the proportion of forage provided by ryegrass silage and energy supplement. Dry matter intake and milk protein percentage decreased linearly with increasing proportions of ryegrass silage, but milk protein yield was similar among forage treatments. There were no differences among forage treatments in milk yield, milk fat percentage and yield, and energy-corrected milk yield. Dry matter intake was higher and there was a tendency for increased milk fat percentage for GC compared with SFC or HF. No other differences were observed in milk yield or composition among energy supplements. Plasma urea nitrogen and glucose concentrations were similar among treatments. Under the conditions of this trial, our results indicate that feeding a combination of corn silage and ryegrass silage is more desirable than feeding ryegrass silage alone, whereas supplementation with GC, SFC, or HF supports similar levels of milk production. 相似文献
5.
The objective of this study was to determine whether production and nutrient utilization differed when lactating cows were fed diets based on 1 of 3 sources of alfalfa silage (AS) and whether performance was altered by feeding rumen-protected Met (RPM; fed as Mepron). Thirty-six lactating Holstein cows were blocked by parity and days in milk, then assigned to a randomized complete block design and fed a 3 × 2 arrangement of diets formulated from alfalfa ensiled in bag, bunker, or oxygen-limited silos, and supplemented with either 0 or 8 g of RPM/d. After feeding a covariate diet for 3 wk, treatment diets were fed for the remaining 12 wk of the trial. Experimental diets averaged [dry matter (DM) basis] 41% AS, 24% corn silage, 24% high-moisture corn, 3.7% soybean meal, 4% roasted soybeans, 2% ground shelled corn, 1.0% minerals and vitamins, 16.7% CP, and 31% NDF. Alfalfa from the oxygen-limited silo was lower in ash, higher in lactate, nonfiber carbohydrate, and in vitro NDF digestibility, had lower pH and ammonia content, and gave rise to greater DM intake and ADF digestibility than silage from the other 2 silos, indicating a more effective fermentation that, in turn, resulted in greater nutrient preservation. However, the more favorable composition, intake, and digestibility of alfalfa from the oxygen-limited silo were not reflected in improved milk production, which was not different among alfalfa sources. There was increased apparent N efficiency and trends for improved feed efficiency and protein yield with RPM supplementation across all 3 silages. The National Research Council (2001) model predicted that feeding RPM reduced Lys:Met ratio from 3.5 to 2.9, indicating that the diets were limiting in Met. 相似文献
6.
In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 × 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 × 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted. 相似文献
7.
Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows 总被引:2,自引:0,他引:2
The mixture of kura clover (Trifolium ambiguum M. Bieb.) and reed canarygrass (Phalaris arundinacea L.) has proven to be extremely persistent in the northern United States, but information about dairy cow performance on this mixture is lacking. Twenty lactating Holstein cows were used in a crossover design to compare dry matter (DM) intake and milk production from diets containing kura clover-reed canarygrass silage (KRS) or alfalfa (Medicago sativa L.) silage (AS). Forages were cut, wilted, ensiled in horizontal plastic bags, and allowed to ferment for at least 50 d before beginning the feeding experiment. The KRS was approximately 40% kura clover and 60% reed canarygrass. Treatments were total mixed rations formulated with either 57% of total DM from 1) AS or 2) KRS. Experimental periods were 28 d, with the first 14 d for diet adaptation and the last 14 d for measurement of intake and milk production. The neutral detergent fiber (NDF) concentrations of AS and KRS were 37.3 and 47.3%, respectively. The fermentation analyses indicated that both silages underwent a restricted fermentation, producing primarily lactic acid and some acetic acid. Dry matter intake (24.2 vs. 22.8 kg) and 4% fat-corrected milk (32.8 vs. 30.9 kg) were significantly higher for cows fed AS than for cows fed KRS. Cows consumed less NDF (6.7 vs. 8.0 kg) and less digestible NDF (3.0 vs. 4.4 kg) when fed AS diets compared with KRS diets, but the pool of ruminally undegraded NDF was similar (3.7 kg) between diets. Cows produced 1.5 kg of milk/kg of DM consumed regardless of the diet, indicating that digestible NDF of KRS was utilized with similar efficiency as the cell wall constituents of AS, but the intake of cows fed KRS may have been limited by rumen fill. Milk fat concentration tended to be higher for cows fed AS, but the milk true protein concentration and yields of fat and protein did not differ by treatment. Milk urea nitrogen content was higher when cows consumed AS (16.4 mg/ dL) compared with KRS (13.4 mg/dL). The cows fed KRS consumed more NDF but less total DMI, based on the results from this trial with diets formulated to contain approximately 60% of DM as forage, resulting in slightly lower milk yields than cows fed excellent-quality AS. This grass-legume mixture has the potential to be a source of quality forage for dairy cows in regions where alfalfa persistence is a problem. 相似文献
8.
Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage 总被引:5,自引:0,他引:5
Adding sugar to the diet has been reported to improve production in dairy cows. In each of 2 trials, 48 lactating Holsteins (8 with ruminal cannulas) were fed covariate diets for 2 wk, blocked by days in milk into 12 groups of 4, and then randomly assigned to diets based on alfalfa silage containing 4 levels of dried molasses (trial 1) or liquid molasses (trial 2). In both studies, production data were collected for 8 wk, ruminal samples were taken in wk 4 and 8, and statistical models were used that included covariate means and block. In trial 1, experimental diets contained 18% CP and 0, 4, 8, or 12% dried molasses with 2.6, 4.2, 5.6, or 7.2% total sugar. With increasing sugar, there was a linear increase in dry matter intake (DMI), and digestibility of dry matter (DM) and organic matter (OM), but no effect on yield of milk or protein. This resulted in linear decreases in fat-corrected milk (FCM)/DMI and milk N/N-intake. There was a linear decrease in urinary N with increasing sugar, and quadratic effects on milk fat content, yield of fat and FCM, and ruminal ammonia. Mean optimum from these quadratic responses was 4.8% total sugar in these diets. In trial 2, experimental diets contained 15.6% crude protein (CP) and 0, 3, 6, or 9% liquid molasses with 2.6, 4.9, 7.4, or 10.0% total sugar, respectively. Again, there were linear declines in FCM/DMI and milk N/N-intake with increasing sugar, but quadratic responses for DMI, yield of milk, protein, and SNF, digestibility of neutral detergent fiber and acid detergent fiber, milk urea, urinary excretion of purine derivatives, and ruminal ammonia. Mean optimum from all quadratic responses in this trial was 6.3% total sugar. An estimate of an overall optimum, based on yield of fat and FCM (trial 1) and yield of milk, protein, and SNF (trial 2), was 5.0% total sugar, equivalent to adding 2.4% sugar to the basal diets. Feeding more than 6% total sugar appeared to depress production. 相似文献
9.
Krizsan SJ Broderick GA Muck RE Promkot C Colombini S Randby AT 《Journal of dairy science》2007,90(10):4793-4804
The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43 kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O2-limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24 h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O2-limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7 kg/d and 150 g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O2-limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270 g/d for cows fed AS from the O2-limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6 kg/d more dry matter and yielded 30 g/d more protein and 50 g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components. 相似文献
10.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components. 相似文献
11.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources. 相似文献
12.
Corn silage (CS) has replaced alfalfa hay (AH) and haylage as the major forage fed to lactating dairy cows, yet many dairy producers believe that inclusion of small amounts of alfalfa hay or haylage improves feed intake and milk production. Alfalfa contains greater concentrations of K and Ca than corn silage and has an inherently higher dietary cation-anion difference (DCAD). Supplemental dietary buffers such as NaHCO3 and K2CO3 increase DCAD and summaries of studies with these buffers showed improved performance in CS-based diets but not in AH-based diets. We speculated that improvements in performance with AH addition to CS-based diets could be due to differences in mineral and DCAD concentrations between the 2 forages. The objective of this experiment was to test the effects of forage (CS vs. AH) and mineral supplementation on production responses using 45 lactating Holstein cows during the first 20 wk postpartum. Dietary treatments included (1) 50:50 mixture of AH and CS as the forage (AHCS); (2) CS as the sole forage; and (3) CS fortified with mineral supplements (CaCO3 and K2CO3) to match the Ca and K content of the AHCS diet (CS-DCAD). Feed intake and milk production were equivalent or greater for cows fed the CS and CS-DCAD diets compared with those fed the AHCS diet. Fat percentage was greater in cows fed the CS compared with the AHCS diet. Fat-corrected milk (FCM; 3.5%) tended to be greater in cows fed the CS and CS-DCAD diets compared with the AHCS diet. Feed efficiencies measured as FCM/dry matter intake were 1.76, 1.80, and 1.94 for the AHCS, CS, and CS-DCAD diets, respectively. The combined effects of reduced feed intake and increased FCM contributed to increased feed efficiency with the CS-DCAD diet, which contained 1.41% K compared with 1.18% K in the CS diet, and we speculate that this might be the result of added dietary K and DCAD effects on digestive efficiency. These results indicate no advantage to including AH in CS-based diets, but suggest that improving mineral supplementation in CS-based diets may increase feed efficiency. 相似文献
13.
Effect of supplemental tallow on performance of dairy cows fed diets with different corn silage:alfalfa silage ratios 总被引:1,自引:0,他引:1
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM. 相似文献
14.
Glen A. Broderick 《Journal of dairy science》2018,101(2):1190-1205
Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS. 相似文献
15.
Benchaar C Petit HV Berthiaume R Ouellet DR Chiquette J Chouinard PY 《Journal of dairy science》2007,90(2):886-897
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source. 相似文献
16.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 × 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage. 相似文献
17.
M.T. Harper J. Oh F. Giallongo G.W. Roth A.N. Hristov 《Journal of dairy science》2017,100(8):6151-6163
The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy. 相似文献
18.
《Journal of dairy science》2017,100(7):5250-5265
Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows. 相似文献
19.
This experiment was conducted to determine the effects of corn silage (CS) hybrids and quality of alfalfa hay (AH) in high-forage dairy diets on N utilization, ruminal fermentation, and lactational performance by early-lactating dairy cows. Eight multiparous Holstein cows were used in a duplicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of dietary treatments. The 8 cows (average days in milk = 23 ± 11.2) were surgically fitted with ruminal cannula, and the 2 squares were conducted simultaneously. Within square, cows were randomly assigned to a sequence of 4 diets: conventional CS (CCS) or brown midrib CS (BMR) was combined with fair-quality AH [FAH: 46.7% neutral detergent fiber (NDF) and 18.4% crude protein (CP)] or high-quality AH (HAH: 39.2% NDF and 20.7% CP) to form 4 treatments: CCS with FAH, CCS with HAH, BMR with FAH, and BMR with HAH. Diets were isonitrogenous across treatments, averaging 15.9% CP. Each period lasted a total of 21 d, with 14 d for treatment adaptation and 7 d for data collection and sampling. Intake of DM and milk yield did not differ in response to CS hybrids or AH quality. Although feeding BMR-based diets decreased urinary N output by 24%, it did not affect fecal N output. Feeding HAH decreased urinary N output by 15% but increased fecal N output by 20%. Nitrogen efficiency [milk N (g/d)/intake N (g/d)] tended to increase for BMR treatments. Ruminal ammonia-N concentration was lower for cows fed BMR-based diets than for those fed CCS-based diets but was not affected by quality of AH. Feeding BMR-based diets or HAH decreased milk urea N concentration by 23 or 15%, respectively, compared with CCS-based diets or FAH. Total volatile fatty acid concentration increased with HAH but was not influenced by CS hybrids. Feeding BMR-based diets decreased urinary N-to-fecal N ratio (UN:FN), and it was further reduced by feeding HAH. Although cows fed the BMR-based diets tended to increase milk N-to-manure N ratio, the quality of AH did not affect the ratio. The lower ratio of UN:FN with a higher ratio of milk N-to-manure N ratio for the BMR-based diets indicates that feeding BMR may reduce manure ammonia-N by reducing excretion of urinary N and increasing secretion of milk N per unit of manure N excreted. 相似文献
20.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars. 相似文献