首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
2.
The pathogenesis of age-related macular degeneration (AMD) is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133) in the hOGG1 gene and the c.972G>C polymorphism (rs3219489) in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395) and c.–32A>G (rs3087404) polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2), XRCC1 and ERCC6 (CSB) have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis.  相似文献   

3.
Age-related macular degeneration (AMD) is central vision loss with aging, was the fourth main cause of blindness in 2015, and has many risk factors, such as cataract surgery, cigarette smoking, family history, hypertension, obesity, long-term smart device usage, etc. AMD is classified into three categories: normal AMD, early AMD, and late AMD, based on angiogenesis in the retina, and can be determined by bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E)-epoxides from the reaction of A2E and blue light. During the reaction of A2E and blue light, reactive oxygen species (ROS) are synthesized, which gather inflammatory factors, induce carbonyl stress, and finally stimulate the death of retinal pigment epitheliums (RPEs). There are several medications for AMD, such as device-based therapy, anti-inflammatory drugs, anti-VEGFs, and natural products. For device-based therapy, two methods are used: prophylactic laser therapy (photocoagulation laser therapy) and photodynamic therapy. Anti-inflammatory drugs consist of corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). Anti-VEGFs are classified antibodies for VEGF, aptamer, soluble receptor, VEGF receptor-1 and -2 antibody, and VEGF receptor tyrosine kinase inhibitor. Finally, additional AMD drug candidates are derived from natural products. For each medication, there are several and severe adverse effects, but natural products have a potency as AMD drugs, as they have been used as culinary materials and/or traditional medicines for a long time. Their major application route is oral administration, and they can be combined with device-based therapy, anti-inflammatory drugs, and anti-VEGFs. In general, AMD drug candidates from natural products are more effective at treating early and intermediate AMD. However, further study is needed to evaluate their efficacy and to investigate their therapeutic mechanisms.  相似文献   

4.
Leucine-rich a-2-glycoprotein 1 (LRG1) is a candidate therapeutic target for treating the neovascular form of age-related macular degeneration (nvAMD). In this study we examined the expression of LRG1 in eyes of nvAMD patients. Choroidal neovascular membranes (CNVMs) from patients who underwent submacular surgery for retinal pigment epithelium–choroid graft transplantation were collected from 5 nvAMD patients without any prior intravitreal anti-VEGF injection, and from six patients who received intravitreal anti-VEGF injections before surgery. As controls free of nvAMD, retina sections were obtained from the eyes resected from a patient with lacrimal sac tumor and from a patient with neuroblastoma. CNVMs were immunostained for CD34, LRG1, and α-smooth muscle actin (α-SMA). Aqueous humor samples were collected from 58 untreated-naïve nvAMD patients prior to the intravitreal injection of anti-VEGF and 51 age-matched cataract control patients, and LRG1 concentration was measured by ELISA. The level of LRG1 immunostaining is frequently high in both the endothelial cells of the blood vessels, and myofibroblasts in the surrounding tissue of CNVMs of treatment-naïve nvAMD patients. Furthermore, the average concentration of LRG1 was significantly higher in the aqueous humor of nvAMD patients than in controls. These observations provide a strong experimental basis and scientific rationale for the progression of a therapeutic anti-LRG1 monoclonal antibody into clinical trials with patients with nvAMD.  相似文献   

5.
Anti-VEGF treatment for neovascular age-related macular degeneration (nAMD) has been FDA-approved in 2004, and since then has helped tens of thousands of patients worldwide to preserve vision. Still, treatment responses vary widely, emphasizing the need for genetic biomarkers to robustly separate responders from non-responders. Here, we report the findings of an observational study compromising 179 treatment-naïve nAMD patients and their reaction to treatment after three monthly doses of anti-VEGF antibodies. We show that established criteria of treatment response such as visual acuity and central retinal thickness successfully divides our cohort into 128 responders and 51 non-responders. Nevertheless, retinal thickness around the fovea revealed significant reaction to treatment even in the formally categorized non-responders. To elucidate genetic effects underlying our criteria, we conducted an undirected genome-wide association study followed by a directed replication study of 30 previously reported genetic variants. Remarkably, both approaches failed to result in significant findings, suggesting study-specific effects were confounding the present and previous discovery studies. Of note, all studies so far are greatly underpowered, hampering interpretation of genetic findings. In consequence, we highlight the need for an extensive phenotyping study with sample sizes exceeding at least 15,000 to reliably assess anti-VEGF treatment responses in nAMD.  相似文献   

6.
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.  相似文献   

7.
The retinal pigment epithelium (RPE), situated upon Bruch’s membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.  相似文献   

8.
Age-related macular degeneration (AMD) is a complex multifactorial disease characterized in its late form by neovascularization (wet type) or geographic atrophy of the retinal pigment epithelium cell layer (dry type). The complement system is an intrinsic component of innate immunity. There has been growing evidence that the complement system plays an integral role in maintaining immune surveillance and homeostasis in AMD. Based on the association between the genotypes of complement variants and AMD occurrence and the presence of complement in drusen from AMD patients, the complement system has become a therapeutic target for AMD. However, the mechanism of complement disease propagation in AMD has not been fully understood. This concise review focuses on an overall understanding of the role of the complement system in AMD and its ongoing clinical trials. It provides further insights into a strategy for the treatment of AMD targeting the complement system.  相似文献   

9.
(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.  相似文献   

10.
This population-based retrospective cohort study investigated the effectiveness of erythropoietin (EPO) treatment in reducing the risk of age-related macular degeneration (AMD) in hemodialysis patients, using the National Health Insurance Research Data of Taiwan. From the database, we identified 147,318 end-stage renal disease (ESRD) patients on hemodialysis who had been diagnosed in 2000–2014 to establish the propensity-score-matched EPO user cohort and non-EPO user cohort with equal sample size of 15,992. By the end of 2016, the cumulative incidence of AMD in EPO users was about 3.29% lower than that in non-EPO users (Kaplan–Meier survival p < 0.0001). The risk of AMD was 43% lower in EPO users than in non-EPO users, with an adjusted hazard ratio (aHR) of 0.57 (95% confidence interval (CI) = 0.51–0.64) estimated in the multivariate Cox model. A significant negative dose–response relationship was identified between the EPO dosage and the risk of AMD (p < 0.0001). Another beneficial effect of EPO treatment was a reduced risk of both exudative AMD (aHR = 0.48, 95% CI = 0.40–0.61) and non-exudative AMD (aHR = 0.61, 95% CI = 0.53–0.69), also in similar dose–response relationships (p < 0.0001). Our findings suggest that EPO treatment for hemodialysis patients could reduce AMD risk in a dose–response relationship.  相似文献   

11.
Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD), a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA) damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA) may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age) when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.  相似文献   

12.
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.  相似文献   

13.
Inflammation is a key underlying factor of age-related macular degeneration (AMD) and inflammasome activation has been linked to disease development. Induced pluripotent stem-cell-derived retinal pigment epithelial cells (iPSC-RPE) are an attractive novel model system that can help to further elucidate disease pathways of this complex disease. Here, we analyzed the effect of dysfunctional protein clearance on inflammation and inflammasome activation in iPSC-RPE cells generated from a patient suffering from age-related macular degeneration (AMD) and an age-matched control. We primed iPSC-RPE cells with IL-1α and then inhibited both proteasomal degradation and autophagic clearance using MG-132 and bafilomycin A1, respectively, causing inflammasome activation. Subsequently, we determined cell viability, analyzed the expression levels of inflammasome-related genes using a PCR array, and measured the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MCP-1 secreted into the medium. Cell treatments modified the expression of 48 inflammasome-related genes and increased the secretion of mature IL-1β, while reducing the levels of IL-6 and MCP-1. Interestingly, iPSC-RPE from an AMD donor secreted more IL-1β and expressed more Hsp90 prior to the inhibition of protein clearance, while MCP-1 and IL-6 were reduced at both protein and mRNA levels. Overall, our results suggest that cellular clearance mechanisms might already be dysfunctional, and the inflammasome activated, in cells with a disease origin.  相似文献   

14.
Age-related macular degeneration (AMD) is an eye disease typically associated with the aging and can be classified into two types—namely, the exudative and the nonexudative AMD. Currently available treatments for exudative AMD use intravitreal injections, which are associated with high risk of infection that can lead to endophthalmitis, while no successful treatments yet exist for the nonexudative form of AMD. In addition to the pharmacologic therapies administered by intravitreal injection already approved by the Food and Drug Administration (FDA) in exudative AMD, there are some laser treatments approved that can be used in combination with the pharmacological therapies. In this review, we discuss the latest developments of treatment options for AMD. Relevant literature available from 1993 was used, which included original articles and reviews available in PubMed database and also information collected from Clinical Trials Gov website using “age-related macular degeneration” and “antiangiogenic therapies” as keywords. The clinical trials search was limited to ongoing trials from 2015 to date.  相似文献   

15.
DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10−4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10−5; Δβ = −11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.  相似文献   

16.
Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-β-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR−/−) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient’s serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.  相似文献   

17.
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. Choroidal neovascularization (CNV) is the major pathologic feature of neovascular AMD. Oxidative damages and the ensuing chronic inflammation are representative of trigger events. Hydrogen gas (H2) has been demonstrated as an antioxidant and plays a role in the regulation of oxidative stress and inflammation. This experiment aimed to investigate the influence of H2 inhalation on a mouse model of CNV. Methods: Laser was used to induce CNV formation. C57BL/6J mice were divided into five groups: the control group; the laser-only group; and the 2 h, 5 h, and 2.5 h/2.5 h groups that received laser and H2 inhalation (21% oxygen, 42% hydrogen, and 37% nitrogen mixture) for 2 h, 5 h, and 2.5 h twice every day, respectively. Results: The severity of CNV leakage on fluorescence angiography showed a significant decrease in the H2 inhalation groups. The mRNA expression of hypoxia-inducible factor 1 alpha and its immediate downstream target vascular endothelial growth factor (VEGF) showed significant elevation after laser, and this elevation was suppressed in the H2 inhalation groups in an inhalation period length-related manner. The mRNA expression of cytokines, including tumor necrosis factor alpha and interlukin-6, also represented similar results. Conclusion: H2 inhalation could alleviate CNV leakage in a laser-induced mouse CNV model, and the potential mechanism might be related to the suppression of the inflammatory process and VEGF-driven CNV formation.  相似文献   

18.
The main aim of this study was to characterize the retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness in the macular area eyes affected by wet age-related macular degeneration (wAMD) treated with anti-VEGF and compare the results with the control of fellow untreated eyes affected by early stages of dry age-related macular degeneration (dAMD). Additionally, we aimed to estimate if the number of injections received and other factors, including age, best-corrected visual acuity (BCVA), or sex, may affect the differences in the obtained measurements of retinal nerve fiber layer thickness. We prospectively included 106 eyes of 53 patients with unilateral wet age-related macular degeneration. The fellow eyes with non-advanced dry age-related macular degeneration served as a control group in a cross-sectional study. RNFL and GCL in the macular region were evaluated using optical coherence tomography, with outcomes expressed as differences in the thickness of both examined layers between the study and control groups. We found thinner GCL in wAMD vs. dAMD (p < 0.001). In turn, the RNFL layer did not show any statistically significant differences between the two groups (p = 0.409). Similarly, we found a statistically significant correlation between the number of injections and the layer thickness (p = 0.106). Among all assessed parameters, age over 73 was the only factor significantly affecting the thickness of the retinal nerve fiber layer in both groups (p = 0.042). The morphology of the inner layers of the retina in dry and wet AMD seems to differ, possibly due to differences in the etiopathogenesis of these two forms of the disease. In our study, the retinal ganglion cell layer was thinner in the treated vs. fellow eye (with dry AMD), while the nerve fiber layer was not significantly different between the groups. The number of anti-VEGF injections had no effect on the thickness of the macular nerve fiber layer.  相似文献   

19.
It has been shown previously that a novel tetrapeptide, Arg-Leu-Tyr-Glu (RLYE), derived from human plasminogen inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis, suppresses choroidal neovascularization in mice by an inhibition of VEGF receptor-2 (VEGFR-2) specific signaling pathway. In this study, we report that a modified tetrapeptide (Ac-RLYE) showed improved anti-choroidal neovascularization (CNV) efficacy in a number of animal models of neovascular age-related macular degeneration (AMD) which include rat, rabbit, and minipig. The preventive and therapeutic in vivo efficacy of Ac-RLYE via following intravitreal administration was determined to be either similar or superior to that of ranibizumab and aflibercept. Assessment of the intraocular pharmacokinetic and toxicokinetic properties of Ac-RLYE in rabbits demonstrated that it rapidly reached the retina with minimal systemic exposure after a single intravitreal dose, and it did not accumulate in plasma during repetitive dosing (bi-weekly for 14 weeks). Our results suggested that Ac-RLYE has a great potential for an alternative therapeutics for neovascular (wet) AMD. Since the amino acids in human VEGFR-2 targeted by Ac-RLYE are conserved among the animals employed in this study, the therapeutic efficacies of Ac-RLYE evaluated in those animals are predicted to be observed in human patients suffering from retinal degenerative diseases.  相似文献   

20.
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号