首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRCA1 and BRCA2 are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following BRCA1 or BRCA2 mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis. Synthetic lethality refers to cell death caused by simultaneous perturbations of two genes while change of any one of them alone is nonlethal. Therefore, synthetic lethality can be instrumental in identifying new therapeutic targets for BRCA1/2 mutations. PARP is an established synthetic lethal partner of the BRCA genes. Its role is imperative in the single-strand break DNA repair system. Recently, Olaparib (a PARP inhibitor) was approved for treatment of BRCA1/2 breast and ovarian cancer as the first successful synthetic lethality-based therapy, showing considerable success in the development of effective targeted cancer therapeutics. Nevertheless, the possibility of drug resistance to targeted cancer therapy based on synthetic lethality necessitates the development of additional therapeutic options. This literature review addresses cancer predisposition genes, including BRCA1, BRCA2, and PALB2, synthetic lethality in the context of DNA repair machinery, as well as available treatment options.  相似文献   

2.
3.
4.
Prostate cancer (PC) is the second most common cancer in men worldwide. Due to the large-scale sequencing efforts, there is currently a better understanding of the genomic landscape of PC. The identification of defects in DNA repair genes has led to clinical studies that provide a strong rationale for developing poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents in this molecularly defined subset of patients. The identification of molecularly defined subgroups of patients has also other clinical implications; for example, we now know that carriers of breast cancer 2 (BRCA2) pathogenic sequence variants (PSVs) have increased levels of serum prostate specific antigen (PSA) at diagnosis, increased proportion of high Gleason tumors, elevated rates of nodal and distant metastases, and high recurrence rate; BRCA2 PSVs confer lower overall survival (OS). Distinct tumor PSV, methylation, and expression patterns have been identified in BRCA2 compared with non-BRCA2 mutant prostate tumors. Several DNA damage response and repair (DDR)-targeting agents are currently being evaluated either as single agents or in combination in patients with PC. In this review article, we highlight the biology and clinical implications of deleterious inherited or acquired DNA repair pathway aberrations in PC and offer an overview of new agents being developed for the treatment of PC.  相似文献   

5.
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.  相似文献   

6.
To better understand the etiology of inflammatory breast cancer (IBC) and identify potential therapies, we studied genomic alterations in IBC patients. Targeted, next-generation sequencing (NGS) was performed on cell-free DNA (cfDNA) (n = 33) and paired DNA from tumor tissues (n = 29) from 32 IBC patients. We confirmed complementarity between cfDNA and tumor tissue genetic profiles. We found a high incidence of germline variants in IBC patients that could be associated with an increased risk of developing the disease. Furthermore, 31% of IBC patients showed deficiencies in the homologous recombination repair (HRR) pathway (BRCA1, BRCA2, PALB2, RAD51C, ATM, BARD1) making them sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We also characterized the tumor-infiltrating lymphocytes (TILs) in tumor tissue biopsies by studying several markers (CD4, CD8, FoxP3, CD20, PD-1, and PD-L1) through immunohistochemistry (IHC) staining. In 7 of 24 (29%) patients, tumor biopsies were positive for PD-L1 and PD-1 expression on TILs, making them sensitive to PD-1/PD-L1 blocking therapies. Our results provide a rationale for considering PARP inhibitors and PD-1/PDL1 blocking immunotherapy in qualifying IBC patients.  相似文献   

7.
Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms: (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC.  相似文献   

8.
Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear whether the mutations are associated with any presenting clinical features. We assessed the incidences and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were 107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets. We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with relatively low PSA.  相似文献   

9.
Cisplatin is a commonly used chemotherapeutic drug for treatment of oral carcinoma, and combinatorial effects are expected to exert greater therapeutic efficacy compared with monotherapy. Poly(ADP-ribosyl)ation is reported to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, and genomic stability. Based on these properties, poly(ADP-ribose) polymerase (PARP) inhibitors are used for treatment of cancers, such as BRCA1/2 mutated breast and ovarian cancers, or certain solid cancers in combination with anti-cancer drugs. However, the effects on oral cancer have not been fully evaluated. In this study, we examined the effects of PARP inhibitor on the survival of human oral cancer cells in vitro and xenografted tumors derived from human oral cancer cells in vivo. In vitro effects were assessed by microculture tetrazolium and survival assays. The PARP inhibitor AZD2281 (olaparib) showed synergetic effects with cisplatin in a dose-dependent manner. Combinatorial treatment with cisplatin and AZD2281 significantly inhibited xenografted tumor growth compared with single treatment of cisplatin or AZD2281. Histopathological analysis revealed that cisplatin and AZD2281 increased TUNEL-positive cells and decreased Ki67- and CD31-positive cells. These results suggest that PARP inhibitors have the potential to improve therapeutic strategies for oral cancer.  相似文献   

10.
Ovarian cancer is the fifth most common female cancer in the Western world, and the deadliest gynecological malignancy. The overall poor prognosis for ovarian cancer patients is a consequence of aggressive biological behavior and a lack of adequate diagnostic tools for early detection. In fact, approximately 70% of all patients with epithelial ovarian cancer are diagnosed at advanced tumor stages. These facts highlight a significant clinical need for reliable and accurate detection methods for ovarian cancer, especially for patients at high risk. Because CA125 has not achieved satisfactory sensitivity and specificity in detecting ovarian cancer, numerous efforts, including those based on single and combined molecule detection and “omics” approaches, have been made to identify new biomarkers. Intriguingly, more than 10% of all ovarian cancer cases are of familial origin. BRCA1 and BRCA2 germline mutations are the most common genetic defects underlying hereditary ovarian cancer, which is why ovarian cancer risk assessment in developed countries, aside from pedigree analysis, relies on genetic testing of BRCA1 and BRCA2. Because not only BRCA1 and BRCA2 but also other susceptibility genes are tightly linked with ovarian cancer-specific DNA repair defects, another possible approach for defining susceptibility might be patient cell-based functional testing, a concept for which support came from a recent case-control study. This principle would be applicable to risk assessment and the prediction of responsiveness to conventional regimens involving platinum-based drugs and targeted therapies involving poly (ADP-ribose) polymerase (PARP) inhibitors.  相似文献   

11.
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.  相似文献   

12.
Ovarian cancer is the most lethal gynecologic malignancy in the United States. Some patients affected by ovarian cancers often present genome instability with one or more of the defects in DNA repair pathways, particularly in homologous recombination (HR), which is strictly linked to mutations in breast cancer susceptibility gene 1 (BRCA 1) or breast cancer susceptibility gene 2 (BRCA 2). The treatment of ovarian cancer remains a challenge, and the majority of patients with advanced-stage ovarian cancers experience relapse and require additional treatment despite initial therapy, including optimal cytoreductive surgery (CRS) and platinum-based chemotherapy. Targeted therapy at DNA repair genes has become a unique strategy to combat homologous recombination-deficient (HRD) cancers in recent years. Poly (ADP-ribose) polymerase (PARP), a family of proteins, plays an important role in DNA damage repair, genome stability, and apoptosis of cancer cells, especially in HRD cancers. PARP inhibitors (PARPi) have been reported to be highly effective and low-toxicity drugs that will tremendously benefit patients with HRD (i.e., BRCA 1/2 mutated) epithelial ovarian cancer (EOC) by blocking the DNA repair pathways and inducing apoptosis of cancer cells. PARP inhibitors compete with NAD+ at the catalytic domain (CAT) of PARP to block PARP catalytic activity and the formation of PAR polymers. These effects compromise the cellular ability to overcome DNA SSB damage. The process of HR, an essential error-free pathway to repair DNA DSBs during cell replication, will be blocked in the condition of BRCA 1/2 mutations. The PARP-associated HR pathway can also be partially interrupted by using PARP inhibitors. Grossly, PARP inhibitors have demonstrated some therapeutic benefits in many randomized phase II and III trials when combined with the standard CRS for advanced EOCs. However, similar to other chemotherapy agents, PARP inhibitors have different clinical indications and toxicity profiles and also face drug resistance, which has become a major challenge. In high-grade epithelial ovarian cancers, the cancer cells under hypoxia- or drug-induced stress have the capacity to become polyploidy giant cancer cells (PGCCs), which can survive the attack of chemotherapeutic agents and start endoreplication. These stem-like, self-renewing PGCCs generate mutations to alter the expression/function of kinases, p53, and stem cell markers, and diploid daughter cells can exhibit drug resistance and facilitate tumor growth and metastasis. In this review, we discuss the underlying molecular mechanisms of PARP inhibitors and the results from the clinical studies that investigated the effects of the FDA-approved PARP inhibitors olaparib, rucaparib, and niraparib. We also review the current research progress on PARP inhibitors, their safety, and their combined usage with antiangiogenic agents. Nevertheless, many unknown aspects of PARP inhibitors, including detailed mechanisms of actions, along with the effectiveness and safety of the treatment of EOCs, warrant further investigation.  相似文献   

13.
Pharmacologic inhibitors of poly(ADP-ribose) polymerase (PARP) putatively enhance radiation toxicity in cancer cells. Although there is considerable information on the molecular interactions of PARP and BRCA1- and BRCA2-deficient cancers, very little is known of the PARP inhibition effect upon cancers proficient in DNA double-strand break repair after ionizing radiation or after stalled replication forks. In this work, we investigate whether PARP inhibition by ABT-888 (veliparib) augments death-provoking effects of ionizing radiation, or of the topoisomerase I poison topotecan, within uterine cervix cancers cells harboring an unfettered, overactive ribonucleotide reductase facilitating DNA double-strand break repair and contrast these findings with ovarian cancer cells whose regulation of ribonucleotide reductase is relatively intact. Cell lethality of a radiation-ABT-888 combination is radiation and drug dose dependent. Data particularly highlight an enhanced topotecan-ABT-888 cytotoxicity, and corresponds to an increased number of unrepaired DNA double-strand breaks. Overall, our findings support enhanced radiochemotherapy toxicity in cancers proficient in DNA double-strand break repair when PARP is inhibited by ABT-888.  相似文献   

14.
15.
16.
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.  相似文献   

17.
Hereditary pancreatic cancers are caused by several inherited genes. Familial pancreatic cancer is defined as pancreatic cancer arising in a patient with at least two first-degree relatives with pancreatic cancer in the absence of an identified genetic cause. Hereditary pancreatic cancer syndromes and familial pancreatic cancers account for about 10% of pancreatic cancer cases. Germline mutations in BRCA1, BRCA2, ATM, PALB2, CDKN2A, STK11, and TP53 and mismatch repair genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) are among the well-known inherited susceptibility genes. Currently available targeted medications include poly (ADP-ribose) polymerase inhibitors (PARP) for cases with mutant BRCA and immune checkpoint inhibitors for cases with mismatch repair deficiency. Loss of heterozygosity of hereditary pancreatic cancer susceptibility genes such as BRCA1/2 plays a key role in carcinogenesis and sensitivity to PARP inhibitors. Signature 3 identified by whole genome sequencing is also associated with homologous recombination deficiency and sensitivity to targeted therapies. In this review, we summarize molecular features and treatments of hereditary pancreatic cancer syndromes and surveillance procedures for unaffected high-risk cases. We also review transgenic murine models to gain a better understanding of carcinogenesis in hereditary pancreatic cancer.  相似文献   

18.
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well.  相似文献   

19.
Genome instability and immune evasion are both defining hallmarks of cancer. Tumorigenesis is frequently initiated when there is DNA damage to a proto-oncogene or tumor suppressor gene and DNA repair mechanisms are lost or insufficient to correct the damage; immune evasion then prevents the host immune system from recognizing these transformed cells. Therapies targeting genomic instability and immune evasion have been effectively used to treat cancer. Genotoxic therapies such as chemoradiation have been employed in cancer treatments for several decades, while immunotherapy is a relatively new class of cancer therapy that has led to disease regression even in patients with advanced cancer. Several recent studies have shown synergy between both classes of therapy targeting these two defining hallmarks of cancer, and different mechanisms are proposed to be involved. Here, we review the different classes of DNA damage, their links to cancer, and their contribution to immunotherapy responses, as well as the different models that are currently being used to study tumor–immune interactions.  相似文献   

20.
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号