首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The ordered structure of biological tissues is a precondition for the development of high performance in these tissues. Hydrogels with anisotropic structures provide a good starting point for studying their biomimetic applications. In this work, a hydrogel that mimics the endogenous anisotropic structure of heart tissue was reported. The gel consists of acrylamide (AM) and 2-Acrylamide-2-methylpro panesulfonic acid (AMPS) as gel monomers, α-ketoglutaric acid as photoinitiator, and modified magnetic nanoparticles (Fe3O4-RS) as crosslinking agent. Thus, AM, AMPS and Fe3O4-Rs was called AAF for short. In the system, the orientation of Fe3O4-Rs was arranged by an external magnetic field. Under ultraviolet (UV) irradiation, the precursor solution was polymerized in situ to form an AAF hydrogel. The structure, pore distribution, rheological properties, mechanical performance, swelling property, and biocompatibility of the prepared anisotropic AAF hydrogel were studied in this paper. Results showed that the mechanical performance of the AAF hydrogels was remarkably enhanced in comparison with the isotropic ones. The tensile strength of AAF hydrogel could reached 184 kPa in the direction of the parallel Orientation of Fe3O4-Rs, and 80 kPa in the direction of the vertical Orientation of Fe3O4-Rs under 25% strain (no magnetic field was applied during all test). Moreover, the anisotropic tensile ratio of AAF hydrogel also reached 2.3. The strength and modulus of anisotropic hydrogels were similar to cardiac tissue (anisotropic tensile ratio was 2.5), which has great potential for application in cardiac tissue engineering.  相似文献   

2.
A novel magnetic semi‐IPN hydrogel based on xylan and poly(acrylic acid) was prepared, and the prepared hydrogels had excellent thermal stability, magnetic‐, and pH‐ sensitive properties. The physical‐chemical properties of the prepared hydrogels depended on the contents of xylan and Fe3O4 nanoparticles. The thermal stability of the hydrogels enhanced as the contents of xylan and Fe3O4 nanoparticles increased; however, the equilibrium swelling ratio decreased with increasing the contents of Fe3O4 nanoparticles and xylan. The interconnected pore channels were formed in the hydrogels and the amount of the channels increased with an increase in xylan content. The prepared hydrogels had a super‐paramagnetic property, and the magnetization increased with an increase in the content of Fe3O4 nanoparticles. The superior characteristics of the xylan/PAAc magnetic semi‐IPN hydrogel would expand its applications in drug delivery and magnetic separation aspects. POLYM. COMPOS., 36:2317–2325, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
《Ceramics International》2023,49(10):15680-15688
Polyvinylalcohol/chitosan (PVA/CS) is an excellent dual-network hydrogel material, but some significant challenges remain in fabricating composites with specific structures. In this study, 3D gel printing (3DGP) combined with a water-level controlled crosslinker bath was proposed for the rapid in-situ prototyping of PVA/CS/Fe3O4 magnetic hydrogel scaffolds. Specifically, the PVA/CS/Fe3O4 hydrogels were extruded into the crosslinker water to achieve rapid in-situ gelation, improving the printability of hydrogel scaffolds. The effect of the PVA/CS ratio on the rheological and mechanical properties of dual-network magnetic hydrogels was evaluated. The printing parameters were systematically optimized to facilitate the coordination between the crosslinking water bath and printer. The different crosslinking water baths were investigated to improve the printability of PVA/CS/Fe3O4 hydrogels. The results showed that the printability of the sodium hydroxide (NaOH) crosslinker was significantly better than that of sodium tripolyphosphate (TPP). The magnetic hydrogels (PVA: CS= 1: 1) crosslinked by NaOH had better compressive strength, swelling rate, and saturation magnetization of 1.17 MPa, 92.43%, and 22.19 emu/g, respectively. The MC3T3-E1 cell culture results showed that the PVA/CS/Fe3O4 scaffolds promoted cell adhesion and proliferation, and the scaffolds crosslinked by NaOH had superior cytocompatibility. 3DGP combined with a water-level controlled crosslinker bath offers a promising approach to preparing magnetic hydrogel materials.  相似文献   

4.
An effective method was developed to isolate toxic heavy metal ions from the aqueous solution by the magnetic nanopolymers. The magnetic sorbent was prepared with radiation‐induced crosslinking polymerization of chitosan (CS), 2‐acrylamido‐glycolic acid (AMGA), and acrylic acid (AAc), which stabilized by magnetite (Fe3O4) as nanoparticles. The formation of magnetic nanoparticles (MNPs) into the hydrogel networks was confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and Scanning electron microscopy, which revealed the formation of MNPs throughout the hydrogel networks. The swelling behavior of the hydrogels and magnetic ones was evaluated at different pH values. The adsorption activity for heavy metals such as Cu2+ and Co2+ by nonmagnetic and magnetic hydrogels, Fe3O4/CS/(AMGA‐co‐AAc), in terms of adsorption amount was studied. It was revealed that hydrogel networks with magnetic properties can effectively be used in the removal of heavy metal ions pollutants and provide advantageous over conventional ones. POLYM. ENG. SCI., 55:1441–1449, 2015. © 2015 Society of Plastics Engineers  相似文献   

5.
During the last two decades, serious efforts have been directed towards the synthesis and coating magnetic nanoparticles for biomedical applications. Among many different types of polymeric coating materials that have been utilized in previous studies, we have selected polyvinyl alcohol (PVA). In this study, we report a novel type of magnetite nanocomposite-based PVA hydrogel. For this purpose, first, Fe3O4 nanoparticles were modified through hexamethylene diisocyanate (HMDI) and then PVA was modified by bromoacetyl bromide to produce bromoacetylated PVA. The modified PVA was cross-linked through various diamines such as ethylene-diamine, propylene-diamine and hexamethylenediamine. The prepared weak tridimensional PVA hydrogels were further reacted through unreacted hydroxyl groups with Fe3O4, modified by HMDI to form magnetite hard tridimensional hydrogels. The swelling behavior of the prepared magnetite nanocomposites were investigated and showed a fast initial swelling followed by a mild increase until attaining equilibrium. The structural, morphological, thermal and magnetic properties of the synthesized magnetite nanocomposites were confirmed by FTIR, thermal gravimetric analysis, vibrating sample magnetometer and scanning electron microscopy. The doxorubicin anti-tumor drug was loaded on a selected synthesized magnetic hydrogel and in vitro drug release studies were done in phosphate buffer solution in 37 °C.  相似文献   

6.
Removal of organic dyes from waste water has received a significant attention in recent years. In this work, a set of nanocomposite hydrogels (NHs) were prepared and their capacity to absorb crystal violet (CV), a cationic dye, and acid yellow‐23 (AY), an anionic dye, from aqueous solutions was determined. NHs were prepared by in situ formation of Fe3O4 magnetic nanoparticles (MNPs) inside poly(acrylamide‐co‐4‐styrene sulfonic acid sodium salt) (P[AAm‐co‐SSA]) hydrogel matrices. The dye absorption capacity of the magnetic NHs (MNHs) was compared with simple hydrogels (hydrogels or SHs) without the MNPs The prepared hydrogels were characterized by FTIR, XRD, thermogravimetric analysis, high resolution TEM, field emission SEM, and vibrating sample magnetometer measurement. From HRTEM, it was confirmed that the prepared MNPs in hydrogel matrices were in the size range of about 8 to 10 nm. The MNHs showed greater swelling behavior as well as greater removal efficiency of cationic dye from aqueous solutions in comparison to the SHs. With increase of SSA mole percentage, dye removal efficiency was also increased for both types of hydrogels. The present study indicates that the hydrogels containing MNPs can be potentially used as an efficient absorbent material for removal of cationic dyes from waste water. POLYM. ENG. SCI., 56:776–785, 2016. © 2016 Society of Plastics Engineers  相似文献   

7.
In recent years, the smart hydrogels have gained much concern in the field of research specially related to flexible strain sensors because they exhibit many types of smart interactions that can be useful in wearable devices. However, the conventional hydrogels have poor electrical conductivity that affect the performance of the sensors, so it remains a challenge to achieve noncontact signal monitoring (e.g., for the detection of magnetic field changes). In this study, an ultra-stretchable and magnetically responsive conductive hydrogel was fabricated by adding magnetic ferric tetroxide@polypyrrole composite nanoparticles (Fe3O4@PPy NPs) to polyacrylamide (PAm). The nanoparticles were easily agglomerated and improved the compatibility of PPy and hydrogel. The obtained PAm/Fe3O4@PPy hydrogel showed an ultra-stretchability of (961%), a low elastic modulus of (87.8 kPa), and an excellent toughness of (1010.5 kJ m−3). Moreover, PAm/Fe3O4@PPy hydrogel also exhibited a high electrical conductivity of 0.34 S m−1, and the PAm/Fe3O4@PPy hydrogel sensor could detect human motions (such as bending of finger, bending of wrist) and muscle micromotion (such as pronouncing). In addition, it can also monitor the change in magnitude of magnetic field.  相似文献   

8.
Magnetic nanoparticles were fabricated in hydroxyethyl methacrylate-dextran hydrogel as stabilizer by loading co-precipitation technique (HDFeL) and gamma irradiation (HDFeR). The structure and the surface morphology of the hydrogels were characterized by fourier transform infrared spectroscopy and scanning electron microscopy. The swelling study of different hydrogels in bidistilled water and different pH’s confirmed that the hydrogels are highly influenced by changing the pH. The average particle size measurements were demonstrated by transmission electron microscope and dynamic light scattering and it is found to be in the nano scale. EPR results show that the (HDFeL) samples exhibited large magnetization while the (HDFeR) samples exhibited no magnetization. EPR signal consists of two components: a broad component observed at g = 2.05774 and narrow component observed at g = 2.00219. All product samples irradiated at different irradiation doses (1–600 kGy) demonstrate no change in EPR spectra. It is expected that the Fe3O4 nanoparticles could be used for radiation shielding.  相似文献   

9.
Magnetic Fe3O4@SiO2 starch‐graft‐poly(acrylic acid) (SPAA) nanocomposite hydrogels were prepared and used as absorbents for removal of crystal violet from aqueous solutions. Dynamic swelling, effect of contact time, absorption kinetics and nanocomposite hydrogel mass for removal of crystal violet dyes from aqueous solutions were studied. Fourier transform infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometer measurements were used for the characterization of the nanocomposite hydrogels. The nanocomposite hydrogels had high magnetic sensitivity under an external magnetic field, which allowed their magnetic separation from water, thus avoiding secondary pollution. The results obtained are very promising since: (i) high levels of colour removal (>85%) were achieved with low magnetic SPAA nanocomposite mass and (ii) the magnetic SPAA nanocomposites can be successfully used several times as absorbents of crystal violet in aqueous solution without needing filtration. © 2012 Society of Chemical Industry  相似文献   

10.
Shape memory hydrogels (SMHs) can fix the hydrogels in a provisional shape and restore the initial shape under external stimulation. Herein, a dual-responsive shape memory hydrogel with dual-responsive swelling and self-healing properties is presented in this work. The SMHs were fabricated by one-step emulsion copolymerization of acrylic acid (AAc), acrylamide (AAm) and stearyl methacrylate (SMA). Sodium alginate (SA) was introduced as an interpenetrating polymer in the network. With ionic cross-linking between -COO and Fe3+ or saline-reinforced hydrophobic association, the hydrogels can be fixed in a provisional shape, which can be restored by immersing the hydrogels in vitamin C solution or pure water, respectively. When the as-prepared hydrogels were immersed in FeCl3 solutions, additional ionic cross-linking between Fe3+ and -COO could be formed, thus constructing the dual physically cross-linked (DPC) network, which endows the hydrogels with excellent fracture stress (2.6 MPa) and toughness (5.47 MJ/m3). Besides, the reversible physical cross-linkings endowed the hydrogel with outstanding self-healing capability. Furthermore, the pH and saline responsive swelling properties of the SMHs are additional fantastic properties. Therefore, we believe that this simple strategy provides a great opportunity for the preparation of SMHs with multiple intellectual performances.  相似文献   

11.
A series of hydrophilic polyglycerol (PG) hydrogel was designed and synthesized via one pot with epichlorohydrin (ECH), H2O, and NaOH as the starting materials. The equilibrium swelling ratios of PG hydrogels could be tuned by simply changing the feed amount of NaOH. The gels were characterized by carbon nuclear magnetic resonance (13C NMR) spectroscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The As‐synthesized PG hydrogels showed temperature‐sensitive swelling behaviors. The results of MTT assay suggested that the PG hydrogels prepared by this novel synthesis method showed comparable cytocompatibility with the recognized poly(ethylene glycol) hydrogel. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43451.  相似文献   

12.

Three crosslinkers, poly(ethylene glycol) diacrylate (PEGDA), glycerol ethoxylate triacrylate (GETA) and citric acid-(PEG acrylate)3 (CA-PEGTA) derived from poly(ethylene glycol) (PEG) were synthesized at first. The three series of poly (N-isopropylacrylamide) (PNIPAAm) hydrogels were prepared by photopolymerization with the crosslinkers and compared with a hydrogel based on commercial crosslinker, N,N′-methylene bis-acrylamide (NMBA). The influence of the crosslinker structures and contents on the swelling behaviour, mechanical properties, and drug release of the hydrogels was investigated. The results showed that the hydrogels based on PEGDA and NMBA exhibited the highest and the lowest swelling ratio, respectively. The content of crosslinker of all hydrogel series showed good thermosensitivity and thermo-reversibility. The critical gel transition temperature (CGTT) appeared at 32 °C for the hydrogel based on NMBA, but appeared at about 34 °C for other hydrogels due to higher hydrophilicity of the crosslinker. In the mechanical properties, three-arms crosslinker GETA and CA-PEGTA led to higher mechanical strength than a linear crosslinker PEGDA. A hydrogel based on GETA (NG6) showed the highest shear modulus of 656.9 kPa and Young’s modulus of 1655.0 kPa. The hydrogels containing higher content of crosslinker revealed lower swelling ratio and higher mechanical strength. In the drug release, the hydrogels with higher swelling ratios showed higher drug absorbed. The highest release percentage of caffeine and vitamin B12 for hydrogel based on PEGDA (NP6) could reach 68.3% and 75.4%, respectively. In addition, the bound water and toxicity of the hydrogels were also investigated.

  相似文献   

13.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The pH-responsive swelling and release behaviors of anionic P(MAA-co-EGMA) hydrogel microparticles having various MAA and EG contents were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. When DC was used as a dispersion stabilizer, well-dispersed hydrogel microparticles having an average diameter of approximately 4 μm were obtained. There was a drastic change of the equilibrium weight swelling ratio of P(MAA-co-EGMA) hydrogels at a pH of around 5, which is the pK a of PMAA. When the MAA content in the hydrogel increased, the swelling ratio increased at a pH above 5 due to the more electrostatic repulsion between the charged groups of MAA. The P(MAA-co-EGMA) hydrogel microparticles showed a pH-responsive release behavior. At low pH (pH 4.0) small amounts of Rh-B were released while at high pH (pH 6.0) relatively large amounts of Rh-B were released from the hydrogels. The difference in the released amount of Rh-B from the hydrogels between pH 4.0 and 6.0 decreased when the MAA content in the hydrogels decreased, which means that the pH-responsive release behavior of the P(MAA-co-EGMA) hydrogel microparticles is closely related to the pH-responsive swelling property of the hydrogel.  相似文献   

15.
Copolymer hydrogels of N-isopropylacrylamide and itaconic acid (IA), crosslinked with N,N′-methylenebisacrylamide, were prepared by radical copolymerization. These hydrogels were investigated with regard to their composition to find materials with satisfactory swelling and drug release properties. A paracetamol is used as a model drug to investigate drug release profile of the hydrogels. It was found that the investigated hydrogels exhibited pH- and temperature-dependent swelling behaviour with restricted swelling and lower equilibrium degree of swelling at lower pH values and temperatures above the LCST value of PNIPAM (around 34 °C). The diffusion exponent for paracetamol release indicate that the mechanism of paracetamol release are governed by Fickian diffusion, while in all release media initial diffusion coefficient was lower than late time diffusion coefficient. Furthermore, the paracetamol release rate depends on the hydrogel degree of swelling and it increased in the first stage of diffusion process, whereas was no significant difference thereafter. The presence of the IA moieties incorporated into the network weakened the shear resistance of the hydrogels. In order to calculate the pore size the characteristic ratio for PNIPAM, C n  = 11.7, was calculated. Based on the pore size, the investigated hydrogels can be regarded as microporous. According to the obtained results swelling behaviour, mechanical properties, drug-loading capacity and the drug release rate could be controlled by hydrogel composition and crosslinking density, which is important for application of the investigated hydrogels as drug delivery systems.  相似文献   

16.
A microfluidic actuator based on thermoresponsive hydrogels   总被引:1,自引:0,他引:1  
We have evaluated the potential use of thermoresponsive hydrogels based on N-isopropylacrylamide as actuators in microfluidic and lab-on-a-chip devices. This required fabrication of hydrogel actuators on the μm length scale, anisotropic swelling of the resulting materials, and control over the kinetics of the hydrogel volume phase transition. The fabrication procedure combined gel polymerization and casting techniques from the life sciences with more traditional semiconductor fabrication protocols for spin-coating, patterning, and etching. The actuator design used a PDMS membrane to separate the hydrogel actuator from the microfluidic channel and a separate reservoir for fluid to swell the actuator. As a result, the actuator could control flow for organic as well as aqueous solutions over a wide range of pH and ionic strength. The presence of a fixed substrate causes the gel swelling to be highly anisotropic, and the actuating motion is perpendicular to the substrate. The anisotropic swelling also limits the degree of swelling for the responsive hydrogel, and the total volume change is lower than the corresponding bulk materials by as much as an order of magnitude. The resulting actuators conform easily to the shape of the microfluidic channel, and the rate of the hydrogel response could be increased by using a series of semi-interpenetrating hydrogel networks. The microfluidic channels ranged in diameter from 180 to 380 μm, and the typical actuator was between 100 to 500 μm in diameter. The time scale of the actuator response was approximated by fitting with a single exponential (∼exp[−t/τ]). The time scale (τ) varied as a function of the actuator size and composition, ranging from 10 min to less than 10 s.  相似文献   

17.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

18.
Conductive hydrogel composed of microcrystalline cellulose (MCC) and polypyrrole (PPy) was prepared in ionic liquid; and the resulting hydrogel was characterized with FT-IR, SEM, XRD and TGA. By doping with TsONa, the MCC/PPy composite hydrogels showed relatively high electrical conductivity, up to 7.83 × 103 S/cm, measured using a four-probe method. The swelling kinetics of the composite hydrogels indicated that the swelling process was mainly influenced by the cellulose content; and the equilibrium swelling ratio decreased as the increasing of MCC content in the hydrogels. In addition, the MCC/PPy composite hydrogels exhibited significantly enhanced mechanical property in contrast to MCC hydrogel.  相似文献   

19.
A series of copolymeric hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm), trimethyl acrylamidopropyl ammonium iodide (TMAAI), and 3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate (DMAPS). Results showed that the swelling ratios of these copolymeric hydrogels increased with an increase of TMAAI content. The drug release behavior of the ionic thermosensitive hydrogels related to their ionicity and drug types. Results indicated that the release ratio of caffeine in the hydrogels was not affected by the ionicity of hydrogels, but increased with increasing of the swelling ratio. The anionic solute (phenol red) strongly interacted with cationic hydrogel (very large Kd), so the phenol red release ratio in cationic gels was very low. On the other hand, CV was adsorbed only on the skin layer of the cationic hydrogel because of the charge repulsion, and released rapidly. Therefore the release ratio was highest for cationic hydrogel to cationic drug. In addition, the partition coefficients (Kd) and the drug delivery behavior of the present gels were also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1592–1598, 2002  相似文献   

20.
In this study, thermo-sensitive terpolymer hydrogels based on N-tert-butylacrylamide (NtBAAm), N-isopropylacrylamide (NIPAAm) and N-vinyl pyrrolidone (NVP) were successfully photopolymerised and characterised. 1-hydroxy-cyclohexylphenylketone (Irgacure 184) and 2-hydroxy-2-methyl-1-phenyl-propanone (Irgacure 2959) were used as light-sensitive initiators to initiate the reactions. Chemical structures of the hydrogels were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The hydrogels were also characterised using modulated differential scanning calorimetry (MDSC) for their glass transition and phase transition temperatures. A single glass transition temperature (T g ) was observed, further confirming successful formation of a terpolymer. The hydrogels were thermo-responsive, exhibiting a decrease in lower critical solution temperature (LCST) as the NtBAAm weight ratio was increased. Pulsatile swelling studies indicated that the hydrogels had thermo-reversible properties and the swelling properties were dependent on test temperature, monomer feed ratios and crosslinker content. The proposed hydrogel system could find applications in a broader field of gel/drug interaction, for the development of controlled release and targeted delivery devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号