首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides (AMPs), which are natural antibiotics, protect against pathogens invading the urinary tract. RNase 7 with antimicrobial properties has rapid and powerful suppressive effects against Gram-positive and Gram-negative bacterial infections. However, its detailed antibacterial mechanisms have not been fully determined. Here, we investigate whether RNase 7 had an impact on bladder cells under uropathogenic Escherichia coli (UPEC) infection in a high-glucose environment using in vitro GFP-UPEC-infected bladder cell and PE-labeled TLR4, STAT1, and STAT3 models. We provide evidence of the suppressive effects of RNase 7 on UPEC infection and UPEC-induced inflammatory responses by regulating the JAK/STAT signaling pathway using JAK inhibitor and STAT inhibitor blocking experiments. Pretreatment with different concentrations of RNase 7 for 24 h concentration-dependently suppressed UPEC invasion in bladder cells (5 μg/mL reducing 45%; 25 μg/mL reducing 60%). The expressions of TLR4, STAT1, and STAT3 were also downregulated in a concentration-dependent manner after RNase 7 pretreatment (5 μg/mL reducing 35%, 54% and 35%; 25 μg/mL reducing 60%, 75% and 64%, respectively). RNase 7-induced decrease in UPEC infection in a high-glucose environment not only downregulated the expression of TLR4 protein and the JAK/STAT signaling pathway but also decreased UPEC-induced secretion of exogenous inflammatory IL-6 and IL-8 cytokines, although IL-8 levels increased in the 25 μg/mL RNase 7-treated group. Thus, inhibition of STAT affected pSTAT1, pSTAT3, and TLR4 expression, as well as proinflammatory IL-6 and IFN-γ expression. Notably, blocking JAK resulted in the rebound expression of related proteins, especially pSTAT1, TLR4, and IL-6. The present study showed the suppressive effects of RNase 7 on UPEC infection and induced inflammation in bladder epithelial cells in a high-glucose environment. RNase 7 may be an anti-inflammatory and anti-infective mediator in bladder cells by downregulating the JAK/STAT signaling pathway and may be beneficial in treating cystitis in DM patients. These results will help clarify the correlation between AMP production and UTI, identify the relationship between urinary tract infection and diabetes in UTI patients, and develop novel diagnostics or possible treatments targeting RNase 7.  相似文献   

2.
《云南化工》2017,(7):7-10
据统计肿瘤已经成为人类健康的最大的威胁。JAK2/STAT3是JAK/STAT通路中的一个重要组成部分,它在肿瘤中的持续性激活可以通过影响细胞的生长、凋亡、周期等起到促进肿瘤发生发展的作用。多种实体瘤中JAK2-STAT3信号通道均处于持续激活状态,因此针对JAK2-STAT3信号通路的靶向治疗成为目前的研究热点。研究发现许多中草药或中草药中的某些化学成分如黄连素、紫檀芪、白花蛇舌草、复方守宫散、岩大戟内酯B等可以作用于JAK2/STAT3信号通道起到抗肿瘤的功效。  相似文献   

3.
Pain, fatigue, and physical activity are major determinants of life quality in rheumatoid arthritis (RA). Janus kinase (JAK) inhibitors have emerged as effective medications in RA and have been reported to exert direct analgesic effect in addition to reducing joint inflammation. This analysis aims to give an extensive summary of JAK inhibitors especially focusing on pain and patient reported outcomes (PRO). MEDLINE, CENTRAL, Embase, Scopus, and Web of Science databases were searched on the 26 October 2020, and 50 randomized controlled trials including 24,135 adult patients with active RA met the inclusion criteria. JAK inhibitors yielded significantly better results in all 36 outcomes compared to placebo. JAK monotherapy proved to be more effective than methotrexate in 9 out of 11 efficacy outcomes. In comparison to biological disease-modifying antirheumatic drugs, JAK inhibitors show statistical superiority in 13 of the 19 efficacy outcomes. Analgesic effect determined using the visual analogue scale and American College of Rheumatology (ACR) 20/50/70 response rates was significantly greater in the JAK group in all comparisons, and no significant difference regarding safety could be explored. This meta-analysis gives a comprehensive overview of JAK inhibitors and provides evidence for their superiority in improving PROs and disease activity indices in RA.  相似文献   

4.
Since its medical legalization, cannabis preparations containing the major phytocannabinoids (cannabidiol (CBD) and δ9-tetrahydrocannabinol (THC)) have been used by patients with rheumatoid arthritis (RA) to alleviate pain and inflammation. However, minor cannabinoids such as cannabigerol (CBG) also demonstrated anti-inflammatory properties, but due to the lack of studies, they are not widely used. CBG binds several cellular target proteins such as cannabinoid and α2-adrenergic receptors, but it also ligates several members of the transient potential receptor (TRP) family with TRPA1 being the main target. TRPA1 is not only involved in nnociception, but it also protects cells from apoptosis under oxidative stress conditions. Therefore, modulation of TRPA1 signaling by CBG might be used to modulate disease activity in RA as this autoimmune disease is accompanied by oxidative stress and subsequent activation of pro-inflammatory pathways. Rheumatoid synovial fibroblasts (RASF) were stimulated or not with tumor necrosis factor (TNF) for 72 h to induce TRPA1 protein. CBG increased intracellular calcium levels in TNF-stimulated RASF but not unstimulated RASF in a TRPA1-dependent manner. In addition, PoPo3 uptake, a surrogate marker for drug uptake, was enhanced by CBG. RASF cell viability, IL-6 and IL-8 production were decreased by CBG. In peripheral blood mononuclear cell cultures (PBMC) alone or together with RASF, CBG-modulated interleukin (IL)-6, IL-10, TNF and immunoglobulin M and G production which was dependent on activation stimulus (T cell-dependent or independent). However, effects on PBMCs were only partially mediated by TRPA1 as the antagonist A967079 did inhibit some but not all effects of CBG on cytokine production. In contrast, TRPA1 antagonism even enhanced the inhibitory effects of CBG on immunoglobulin production. CBG showed broad anti-inflammatory effects in isolated RASF, PBMC and PBMC/RASF co-cultures. As CBG is non-psychotropic, it might be used as add-on therapy in RA to reduce IL-6 and autoantibody levels.  相似文献   

5.
Rheumatoid arthritis (RA) is a common disease worldwide and is treated commonly with methotrexate (MTX). CS12192 is a novel JAK3 inhibitor discovered by Chipscreen Biosciences for the treatment of autoimmune diseases. In the present study, we examined the therapeutic effect of CS12192 against RA and explored if the combinational therapy of CS12192 and MTX produced a synergistic effect against RA in rat collagen-induced arthritis (CIA). Arthritis was induced in male Sprague-Dawley rats by two intradermal injections of bovine type II collagen (CII) and treated with MTX, CS12192, or the combination of CS12192 and MTX daily for two weeks. Effects of different treatments on arthritis score, X-ray score, pathology, and expression of inflammatory cytokines and biomarkers were examined. We found that treatment with either CS12192 or MTX produced a comparable therapeutic effect on CIA including: (1) significantly lowering the arthritis score, X-ray score, serum levels of rheumatic factor (RF), C-reactive protein (CRP), and anti-nuclear antibodies (ANA); (2) largely alleviating histopathological damage, reducing infiltration of Th17 cells while promoting Treg cells; (3) inhibiting the expression of inflammatory cytokines and chemokines such as IL-1β, TNF-α, IL-6, CCL2, and CXCL1. All these inhibitory effects were further improved by the combinational therapy with MTX and CS12192. Of importance, the combinational treatment also resulted in a marked switching of the Th17 to Treg and the M1 to M2 immune responses in synovial tissues of CIA. Thus, when compared to the monotherapy, the combination treatment with CS12192 and MTX produces a better therapeutic effect against CIA with a greater suppressive effect on T cells and macrophage-mediated joint inflammation.  相似文献   

6.
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients’ quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.  相似文献   

7.
STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of β2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.  相似文献   

8.
9.
10.
11.
The composition of IL-23R complex is similar to that of the IL-12 receptor (IL-12R) complex with a shared IL-12R-β1 chain. The IL-12R-β1 heterodimerizes with IL-23R and IL-12R-β2 to form IL-23R and IL-12R complexes, respectively. The IL-12R-β2 has been shown to function as a tumor suppressor gene and apoptotic inducer. However, whether IL-23R also functions in cell apoptosis is currently unknown. In this study, we demonstrate for the first time that overexpression of IL-23R markedly induces cell apoptosis in both 293ET and HeLa cells. The activations of caspase 3 and caspase 9 are induced by IL-23R. Mechanistic study reveals that IL-23R markedly inhibits RAS/MAPK and STAT3 but not STAT1 and PI-3K/Akt signaling pathways in both 293ET and HeLa cells. Overexpression of IL-23R significantly up-regulates IL-12Rβ1 expression but not IL-23α and IL-12β expressions in both cell lines. Therefore, our data strongly indicates that IL-23R is able to induce cell apoptosis by activating the intrinsic mitochondrial pathways associated with the inhibition in RAS/MAPK and STAT3 activations in mammalian cells.  相似文献   

12.
E26 transformation-specific-1 (ETS1) and WDFY family member 4 (WDFY4) are closely related with systemic lupus erythematosus. We hypothesized that ETS1 and WDFY4 polymorphisms may contribute to rheumatoid arthritis (RA) susceptibility. We studied ETS1 rs1128334 G/A and WDFY4 rs7097397 A/G gene polymorphisms in 329 patients with RA and 697 controls in a Chinese population. Genotyping was done using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. When the WDFY4 rs7097397 AA homozygote genotype was used as the reference group, the AG genotype was associated with a significantly increased risk for RA. In the dominant model, when the WDFY4 rs7097397 AA homozygote genotype was used as the reference group, the AG/GG genotypes were associated with a significant increased susceptibility to RA. In stratification analyses, a significantly increased risk for RA associated with the WDFY4 rs7097397 AG genotype was evident among female patients, younger patients, C-reactive protein (CRP) negative patients and both anti-cyclic citrullinated peptide antibody (ACPA) positive patients and negative patients compared with the WDFY4 rs7097397 AA genotype. These findings suggested that WDFY4 rs7097397 A/G may be associated with the risk of RA, especially among younger, female patients, CRP-negative patients and both ACPA positive and negative patients. However, our results were obtained from a moderate-sized sample, and therefore this is a preliminary conclusion. To confirm these findings, validation by a larger study from a more diverse ethnic population is needed.  相似文献   

13.
14.
15.
Testicular ischemia reperfusion injury (tIRI) causes oxidative stress-induced DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to establish a direct link between JAK2 activation and the DNA damage response (DDR) signaling pathways and their role in tIRI-induced GCA using AG490, a JAK2 specific inhibitor. Male Sprague Dawley rats (n = 36) were divided into three groups: sham, unilateral tIRI and tIRI + AG490 (40 mg/kg). During tIRI, augmentation in the phosphorylation levels of the JAK2/STAT1/STAT3 was measured by immunohistochemistry. Observed spermatogenic arrest was explained by the presence of considerable levels of DSB, AP sites and 8OHdG and activation of caspase 9, caspase 3 and PARP, which were measured by colorimetric assays and TUNEL. The ATM/Chk2/H2AX and ATR/Chk1 pathways were also activated as judged by their increased phosphorylation using Western blot. These observations were all prevented by AG490 inhibition of JAK2 activity. Our findings demonstrate that JAK2 regulates tIRI-induced GCA, oxidative DNA damage and activation of the ATM/Chk2/H2AX and ATR/Chk1 DDR pathways, but the cell made the apoptosis decision despite DDR efforts.  相似文献   

16.
Background: Cibotii rhizoma (CR) is a famous traditional Chinese medicine (TCM) used to treat bleeding, rheumatism, lumbago, etc. However, its therapeutic effects and mechanism against thrombocytopenia are still unknown so far. In the study, we investigated the effects of aqueous extracts of Cibotii rhizoma (AECRs) against thrombocytopenia and its molecular mechanism.Methods: Giemsa staining, phalloidin staining, and flow cytometry were performed to measure the effect of AECRs on the megakaryocyte differentiation in K562 and Meg-01 cells. A radiation-induced thrombocytopenia mouse model was constructed to assess the therapeutic actions of AECRs on thrombocytopenia. Network pharmacology and experimental verification were carried out to clarify its mechanism against thrombocytopenia. Results: AECRs promoted megakaryocyte differentiation in K562 and Meg-01 cells and accelerated platelet recovery and megakaryopoiesis with no systemic toxicity in radiation-induced thrombocytopenia mice. The PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways contributed to AECR-induced megakaryocyte differentiation. The suppression of the above signaling pathways by their inhibitors blocked AERC-induced megakaryocyte differentiation. Conclusions: AECRs can promote megakaryopoiesis and thrombopoiesis through activating PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways, which has the potential to treat radiation-induced thrombocytopenia in the clinic.  相似文献   

17.
18.
19.
Hepatocyte growth factor (HGF) induced the proliferation of lens epithelial cells (LECs) and may be a major cause of posterior capsule opacification (PCO), which is the most frequent postoperative complication of cataract surgery. To date, several agents that can block LECs proliferation have been studied, but none have been used in clinic. Recently, accumulating evidence has suggested rapamycin, the inhibitor of mTOR (mammalian target of Rapamycin), was associated with the induction of apoptosis in LECs. The purpose of our study was to investigate the potential effects of rapamycin on HGF-induced LECs and the underlying mechanisms by which rapamycin exerted its actions. Using cell proliferation, cell viability and flow cytometric apoptosis assays, we found that rapamycin potently not only suppressed proliferation but also induced the apoptosis of LECs in a dose-dependent manner under HGF administration. Further investigation of the underlying mechanism using siRNA transfection revealed that rapamycin could promote apoptosis of LECs via inhibiting HGF-induced phosphorylation of AKT/mTOR, ERK and JAK2/STAT3 signaling molecules. Moreover, the forced expression of AKT, ERK and STAT3 could induce a significant suppression of apoptosis in these cells after treatment of rapamycin. Together, these findings suggested that rapamycin-induced apoptosis in HGF-stimulated LECs is accompanied by inhibition of AKT/mTOR, ERK and JAK2/STAT3 pathways, which supports its use to inhibit PCO in preclinical studies and provides theoretical foundation for future possible practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号