首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present research work is to study the effect of different amounts of melamine‐formaldehyde (MF) viz., 0–20 parts by dry weight on the thermal stability of polyvinyl acetate (PVAc) latex impregnated polyester nonwoven fabric composites. From the thermogravimetric analysis, the improvement in thermal stability of the composites was noticed with increase in the MF content. Composites fabricated with five parts MF‐incorporated PVAc showed a drastic increase in the onset degradation temperature when compared with unfilled composites. It was found that the degradation of MF‐loaded PVAc‐polyester nonwoven fabric composites takes place in two steps. Degradation kinetic parameters were calculated for the composites using Broido and Horowitz‐Metzger methods. The tensile fractured composite specimens were analyzed using scanning electron microscope to know the morphological behavior. The increased percentage ash content also supports for the increased thermal stability of the composites with increasing the MF content in the system. The adhesion between the fiber and matrix can be seen from scanning electron microphotographs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A series of composites were fabricated by impregnating a polyester nonwoven fabric with melamine–formol (MF)‐incorporated poly(vinyl acetate) (PVAc) latex. The effect of different weight ratios of MF/PVAc, i.e. 0/100, 5/100, 10, 100, 15/100 and 20/100 (dry, wt/wt), on the water sorption and diffusion into the composites was evaluated. Water sorption studies were carried out at different temperatures, i.e. 30, 50 and 70 °C, based on the immersion weight gain method. From the sorption results, the diffusion (D) and permeation (P) coefficients of water penetrant were calculated. A significant increase in the diffusion and permeation coefficients was observed with an increase in the temperature of sorption. Drastic reductions in diffusion and permeation coefficients were noticed with increasing MF content in the composites. Attempts were made to estimate the empirical parameters like n, which suggests the mode of transport, and K, a constant which depends on the structural characteristics of the composite in addition to its interaction with water. The temperature dependence of the transport coefficients was used to estimate the activation energy parameters for diffusion (ED) and permeation (Ep) processes from Arrhenius plots. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
Composites of polystyrene (PS) and poly(styrene‐co‐acrylonitrile) (SAN) containing a fraction of a dodecylsulfate‐modified Mg–Al layered double hydroxide (LDH) were prepared by means of a melt‐extrusion process. The structure and morphology were analyzed with wide‐angle X‐ray scattering and transmission electron microscopy, respectively. The X‐ray spectra of the PS matrix composite displayed the diffraction peak characteristic of the hybrid LDH basal plane at 2θ = 3.1 deg. The SAN matrix composite did not exhibit such a diffraction peak. Both PS and SAN composites displayed an intercalated type of morphology with respect to the LDH platelets, as assessed by transmission electron microscopy. A plasticizing effect due to the hybrid LDH particles was observed for all composites and was supported by a decrease in the glass‐transition temperature values and by Fourier transform infrared spectra. Besides tensile properties, the fracture toughness of the composites was compared with that of the pure polymers through the linear elastic fracture mechanics parameters. They were determined from fracture tests under a three‐point‐bending configuration. The results indicated that the effect of adding a small fraction of modified LDH particles to SAN caused an improvement in fracture toughness of 50% with respect to that of the pure polymer. Moreover, the relative increase in the fracture energy was about 200%. For PS matrix composites, both tensile properties and linear elastic fracture mechanics fracture parameters remained unaffected. These results were explained on the basis of the different plasticities developed by both polymers around the particles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The effects of reactive poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) and poly(vinyl acetate)‐block‐polystyrene (PVAc‐b‐PS) as low‐profile additives (LPA) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester resins (UP) during the cure at 30°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerizations, using polymeric peroxides (PPO) as initiators. Depending on the LPA composition and molecular weight, the reactive LPA could lead to a reduction of cyclization reaction for UP resin during the cure, and would be favorable for the decrease of intrinsic polymerization shrinkage after the cure. The experimental results have been explained by an integrated approach of measurements for the static phase characteristics of the styrene (ST)/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and image analysis. Based on the Takayanagi mechanical model, factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts have been explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 967–979, 2006  相似文献   

5.
The different steps associated with the curing of a PVAc/polyester blend are identified and correlated to the mechanism of shrinkage control in the presence of a low‐profile additive (LPA). Poly(vinyl acetate) (PVAc) is used as a LPA and is shown to induce a phase separation upon curing that leads to an interconnected globule morphology. This morphology strongly modifies the rheokinetics of the blend compared to that of the neat polyester resin. In particular, the presence of PVAc delays the cure kinetics and the gel time. A comparison between these delays, called shift times, demonstrates an increase in the gel conversion of polyester in the presence of PVAc. This, coupled to the thermal expansion of PVAc at the early stages of curing, contributes to the low‐profile effect. Microvoids in the LPA‐rich phase, which are believed to play a key role in the mechanism of shrinkage control, are efficient at the later stages of curing and during cooling and complete the low‐profile effect. However, it is also shown that the formation of microvoids may indirectly induce macroscopic voids that could be at the origin of pinholes at the surface of the parts molded with this material. POLYM. ENG. SCI. 46:303–313, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
The final morphology of cured blends based on unsaturated polyester, styrene, and low‐molar‐weight saturated polyester as a low profile additive (LPA) was investigated with atomic force microscopy and scanning electron microscopy. The observed structure was compared to those obtained with widely used poly(vinyl acetate) (PVAc). On the surface and in the bulk, a network of particles, ranging in size from 50 to 60 nm, was observed with saturated polyester as an LPA. The influence of the molar weight and LPA content was investigated. To determine the mechanism of formation of such a morphology, in situ experiments were carried out to elucidate the phase‐separation mechanism. Small‐angle laser light scattering and small‐angle neutron scattering experiments were performed on ternary blends containing PVAc and saturated polyester, respectively. The first stage of spinodal decomposition was observed in both cases. Within our experimental conditions, gelation froze further evolution and led to a two‐phase cocontinuous structure that imposed the final morphology characteristics. In particular, the period and amplitude of the concentration fluctuations generated during the phase separation played essential roles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1459–1472, 2005  相似文献   

7.
Polystyrene (PS) composites with a network of single‐walled carbon nanotubes (SWNTs) were fabricated by using monodispersed PS micospheres. First, PS spheres and surfactant‐dispersed SWNTs were mixed in water, then a hybrid cake was obtained by filtration via a microporous membrane and the SWNTs were filled within the spaces of packed polymer spheres. At this stage, the surfactants for dispersing SWNTs were totally removed from the composites by a thorough washing. Then the composite films with SWNT networks were obtained by compression molding at 160°C. Structure of the composites had been characterized by transmission electron microscopy and scanning electron microscopy. The present SWNT composites showed a low percolation threshold of electrical conductivities. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
Epoxy E51‐modified bisphenol A dicyanate (BADCy) and its high‐modulus carbon fiber (M40) reinforced composites were prepared in this research. The carbon‐fiber composites were prepared by autoclave molding. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy of BADCy‐E51 blend systems showed that polycyclotrimerization of BADCy primarily took place at low temperature. Epoxy group reacted with triazine ring group and produced oxazolidinone at high temperature. The data of mechanical properties, water absorption, and heat deflection temperature (HDT) of cured castings showed that the matrix system containing 95 wt% BADCy and 5 wt% E51 had optimum characteristics. Scanning electron microscopy (SEM) analysis of M40 fiber and the fracture surfaces of M40/BADCy‐E51 composite displayed that the adhesion between M40 fiber and BADCy was good though the surface of M40 was inert. The high retention of mechanical properties of M40/BADCy‐E51 composite after long‐term exposure to environmental conditions indicated that the M40/BADCy composite was suitable for space applications. POLYM. COMPOS., 27:402–409, 2006. © 2006 Society of Plastics Engineers  相似文献   

10.
Poly(vinyl acetate)–TEMPO (PVAc–TEMPO) macroinitiators were synthesized by bulk polymerization of vinyl acetate in the presence of benzoyl peroxide (BPO) followed by termination with 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Radicals were mainly transferred to the acetoxy methyl groups in PVAc during the polymerization. The PVAc–TEMPO macroinitiators had several TEMPO‐dormant sites and styrene bulk polymerization with the macroinitiators produced poly(vinyl acetate)‐graft‐polystyrene (PVAc‐g‐PS). All the TEMPO‐dormant sites of PVAc–TEMPO macroinitiators participated in the styrene polymerization with almost equal reactivity. Methanolysis of PVAc‐g‐PS broke the PS branches apart from the PVAc backbone chains. Hydrophobic or hydrophilic porous membranes with controlled pore size could be prepared by removing the PVAc domains or the PS domains from the graft copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1658–1667, 2001  相似文献   

11.
The non‐Fickian sorption kinetics of methanol vapor in poly(methyl methacrylate) films 8 and 51 μm thick at 25°C are presented. The behavior of the system was studied in series of interval and integral absorption runs. The relevant diffusion coefficient and viscous relaxation processes were studied separately by kinetic analysis of the first and second stages of sorption kinetic curves. The sorption isotherm concaved upward at high activities, this being typical of Flory–Huggins behavior, whereas it exhibited a convex‐upward curvature at low methanol vapor activities, this indicating sorption in the excess free volume of the polymer matrix. After excess free‐volume fill‐up, the concentration dependence of the diffusion coefficient was found to be well represented by the free‐volume theory of Vrentas and Duda. Relaxation frequencies calculated from the second stage of two‐stage curves exhibited a weak dependence on the concentration. Integral sorption experiments indicated that the system exhibited nearly case II kinetics at high methanol vapor activities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1184–1195, 2005  相似文献   

12.
BACKGROUND: Adsorption of puerarin on native resin polystyrene (PS) and oligo‐β‐cyclodextrin‐coupled matrix (PS‐CDP) was studied for interactions between the adsorbents and the adsorbates. The sorption mechanism on PS‐CDP was investigated using the isosteric heat approach and nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The equilibrium adsorption data of puerarin on the two matrices PS and PS‐CDP (polystyrene‐based matrix before and after coupling by oligo‐β‐cyclodextrin) in the temperature range 288–318 K were well fitted to the Freundlich adsorption isotherm model. The energetic heterogeneity of the media was observed based on the result that the values of isosteric enthalpy were quantitatively correlated with the fractional loading of puerarin adsorption. The more heterogeneous surface of PS‐CDP compared with PS was attributed to the complexation between puerarin and β‐cyclodextrin (β‐CD). NMR studies validated the formation of an inclusion complex puerarin/β‐CD. CONCLUSION: Thermodynamic and NMR studies confirmed that multi‐interaction cooperatively governed the isolation of puerarin from aqueous solution on PS‐CDP matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
A novel polymer‐nanoclay hybrid nanocomposite based on polyvinyl acetate (PVAc)‐organophilic montmorillonite (OMMT) has been reported via an in situ intercalated polymerization technique. The hybrid material was synthesized by one‐step emulsion polymerization of vinyl acetate in the presence of OMMT using polyvinyl alcohol as the stabilizing agent. The intercalated polymerization was characterized by X‐ray diffraction (XRD). The XRD patterns show that the interlayer spacing of OMMT after polymerization increased from 2.64 to 3.78 nm, indicating that the large macromolecular chain of PVAc was formed in the OMMT interlayer space. The Fourier transform infrared spectrum showed the characteristic absorption of PVAc in the OMMT particles separated from the nanocomposite, and the position of peaks shifted to high wave numbers. This showed that there was an interaction between PVAc and OMMT nanoparticles. A two‐fold blend composed of PVAc‐nano‐OMMT/PP was prepared by the melt‐blending technique. XRD and transmission electron microscopy images of the PVAc‐nano‐OMMT/PP composite further confirmed the formation of a partially delaminated nanocomposite structure. Thermogravimetry results showed that the thermal stability of PVAc‐nano‐OMMT/PP was greater than that of either polypropylene (PP) or Nano‐OMMT/PP blend. PVAc‐nano‐OMMT/PP had better toughness, as the mass fraction of OMMT was 5 wt %. The flame retardancy of PP, Nano‐OMMT/PP, and PVAc‐nano‐OMMT/PP composites was also studied. According to the limiting oxygen index (LOI) data and Cone calorimeter test, the addition of PVAc‐OMMT resulted in higher LOI and lower heat release rate, effective heat of combustion, smoke release course, and better flame retardancy and barrier properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The submitted work discussed the possibility of using two of the most problematic wastes to formulate an added‐value hard wood‐composite (HWC). The lignocellulosic rice straws (RS) fibers (as reinforced filler) and recycled expanded polystyrene foam (PS) wastes (as dispersed polymer matrix), were used to formulated the hard wood product applying the hot press technique. The air dried RS was added to the molten PS at increasing ratios (30–70% mass:mass), and the reached HWC sheet was subjected to tensile strength, water absorption and acoustic resistance characterizations. Based on the experimental data, it was found that increasing the RS contents accompanied with a diminish in the tensile strength value by about 50% at 70% RS compare to that at 30% RS. To improve the adhesion between the hydrophilic filler RS and the hydrophobic PS matrix, maleated PS graft (PS‐g‐MA) was prepared and added at the expanse of the PS content, to formulate an additional wood‐composite (HWCg) aiming to have better mechanical and dimensional stability features. Results obtained indicated that increasing the coupling agent content, keeping the RS added constant, enhance the tensile strength feature in addition, reduced the water absorption for the final products by more than 45%. The data obtained suggested that, it can create added‐value hard wood composites entirely from the two nominated problematic wastes. In addition to the value gained by the environment, the reached hard wood products record acceptable mechanical characterization, dimensional stability and sound resistance properties that qualified it to replace the natural wood in many daily applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44770.  相似文献   

15.
To compare two kind of resin‐based dental composites, the polymerization shrinkage, contraction stress (CS), and degree of conversion (DC) of four dimethacrylate‐based and one silorane‐based composite were investigated. To determine shrinkage, the composites were packed, respectively, into a cylindrical cavity in human teeth and imaged using X‐ray microcomputed tomography to determine the precise volume before and 30 min after photopolymerization. To determine CS, the sample was applied in a similarly sized cylinder in a universal testing machine and monitored for 30 min. FTIR spectroscopy was used to determine DC. The volumetric shrinkage (range: 1.1–3.1%) and maximum CS (range: 1.2–3.5 MPa) differed significantly among the tested composites but not the final DC (range: 62.3–69.1%). The silorane‐based composite displayed the lowest volumetric shrinkage and CS of all composites. No correlation was observed between the stress and volumetric shrinkage values of the dimethacrylate‐based composites. A moderate correlation was found between stress and DC (r = 0.836), which was significant at 20 and 40 s. The silorane‐based composite exhibited superior shrinkage behavior compared with conventional dimethacrylate composites with comparable polymerization kinetics. The CS was dependent on multiple variables, including the volumetric shrinkage, DC, and curing rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The use of ambient cured E‐glass/vinylester composites is increasingly being considered for infrastructure applications both along the shore and offshore, thereby exposing the composite to a marine aqueous environment. The use of ambient cure potentially results in incomplete polymerization and susceptibility for degradation early in life. This study characterizes the mechanical response of E‐glass/vinylester quadriaxial composites immersed in deionized water, sea water, and synthetic sea water. It is seen that there are substantial differences based on the solution type, with deionized water immersion causing the maximum drop in interlaminar shear performance and sea water causing the maximum reduction in tensile performance. The effect of cycling, simulating the tidal zone or the splash zone, is seen to be more pronounced in a resin‐dominated response. Drying of specimens, even over prolonged periods of time, is not seen to result in complete regain of performance degradation due to sorption processes. A clear competition is seen between the phenomena of moisture‐induced residual cure/postcure and physical (fiber‐matrix debonding, microcracking, plasticization) and chemical (hydrolysis) aging. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2760–2767, 2002  相似文献   

17.
Water and water vapor sorption to porous polypropylene–zeolite composites prepared by hot pressing have been studied as a function of zeolite loading. This work presents the first report on the effect of the zeolite as a filler on the water‐sorption properties of PP composites. Water swelling experiments were conducted at 25°C using pure PP and PP–zeolite films samples having different zeolite loadings (6–40 wt %). Because PP is a hydrophobic polymer, it does not sorp any water, but the composites having 10, 20, 30, and 40% zeolites have sorbed 0.63, 1.00, 1.72 and 3.74% water, respectively. The zeolite itself at the same conditions sorbed 24.5% water. As the filler loading in the composites increased, equilibrium uptake values increased also. On the other hand, water vapor sorption and kinetics has been studied using a Cahn 2000 gravimetric sorption system. Within in the range of 0.35–0.95% water vapor was adsorbed by the composites containing 10–40 wt % zeolites. Experimental effective water vapor diffusivities of the composite films was about one order of magnitude higher (10‐fold) than the experimental water diffusion coefficient in composites. The transport of water in composites was slower than that in the liquid water due to the longer diffusion pathway and adsorption on the surface of the composites. Although the liquid water may fill all the voids in the composite, water vapor is adsorbed on the surface of the zeolite only. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3069–3075, 2003  相似文献   

18.
Castable particulate‐filled epoxy resins exhibiting excellent thermal conductivity have been prepared using hexagonal boron nitride (hBN) and cubic boron nitride (cBN) as fillers. The thermal conductivity of boron nitride filled epoxy matrix composites was enhanced up to 217% through silane surface treatment of fillers and multi‐modal particle size mixing (two different hBN particle sizes and one cBN particle size) prior to fabricating the composite. The measurements and interpretation of the curing kinetics of anhydride cured epoxies as continuous matrix, loaded with BN having multi‐modal particle size distribution, as heat conductive fillers, are highlighted. This study evidences the importance of surface engineering and multi‐modal mixing distribution applied in inorganic fillered epoxy‐matrix composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
A three‐dimensional braided carbon fiber–epoxy (C3D/EP) composite was prepared by the vacuum‐assisted resin transfer molding (VARTM) technique. Its moisture absorption behavior under different media was characterized and compared with a unidirectional composite. Similar to the unidirectional composite, diffusion in the 3D composite obeys Fick's second law of diffusion when immersed in distilled water and phosphate‐buffered saline. In HCl and NaOH solutions, no Fickian behavior was observed. The similarity between the unidirectional and 3D composites suggests that fiber structure does not change diffusion pattern. However, the two composites showed different diffusion parameters (k, D, and Me) in each medium studied. The 3D composite showed lower k, D, and Me values because of its stronger hindrance effect to transport of moisture molecules. Diffusion in PBS is slower than that in distilled water because of the presence of heavy ions, but the diffusion pattern remains unchanged. In HCl, the diffusion behavior of the two composites cannot be described by Fick's law. In addition, the k value calculated from the initial linear part of the moisture sorption curve is much lower than that in distilled water. Diffusion in NaOH is unusual; the uptake initially increases rather rapidly but quickly drops, which is likely caused by the extensive solubility of the polymer matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 507–512, 2005  相似文献   

20.
A novel type of highly swollen hydrogels based on acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) crosslinked by 1,4‐butanediol dimethacrylate (BDMA) was prepared by free radical solution polymerization in aqueous media. Water uptake and dye sorption properties of polyelectrolyte AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were investigated as a function of composition to find materials with swelling and sorption properties. FTIR analyses were made. Swelling experiments were performed in water and dye solution at 25°C, gravimetrically. Highly swollen AAm/AMPS and AAm/AMPS/Bent hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as Lauths violet “LV, (Thionin).” Swelling of AAm/AMPS hydrogels was increased up to 1,920–9,222% in water and 867–4,644% in LV solutions, while AAm hydrogels swelled 905% in water and swelling of AAm/AMPS/Bent hydrogels was increased up to 2,756–10,422% in water and 1,200–3,332% in LV solutions, while AAm/Bent hydrogels swelled 849% in water. Some swelling kinetic and diffusional parameters were found. Water and LV diffusion into hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, LV into AAm/AMPS and AAm/AMPS/Bent hydrogel was studied by batch sorption technique at 25°C. The amount of the dye sorbed per unit mass removal effiency and partition coefficient of the hydrogels was investigated. The influence of AMPS content in the hydrogels to sorption was examined. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号