首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

2.
利用聚酰亚胺(PI)作为碳纤维(CF)界面改性剂,制备了界面改性碳纤维增强聚醚醚酮(MCF/PEEK)复合材料。采用差示扫描量热仪(DSC)讨论了CF及其界面改性对PEEK非等温结晶行为的影响机制与作用规律,并基于莫志深法研究了MCF/PEEK的非等温结晶动力学;借助DSC和小角X射线散射仪(SAXS)表征不同降温速率下PEEK基体的结晶结构,采用万能试验机评价了MCF/PEEK的力学性能。结果发现:CF对PEEK的结晶有较为明显的异相成核促进作用,经过PI界面改性之后成核作用有所下降,但结晶行为仍较纯PEEK更容易发生,整体结晶速率更快;随冷却速率的增大,基体结晶度、片晶厚度与长周期均减小,MCF/PEEK的拉伸强度与模量也显著减小,层间断裂韧性提高。  相似文献   

3.
采用阳极氧化法对PAN基碳纤维的表面进行改性,然后使用上浆剂对纤维表面进行上浆处理。使用扫描电镜、原子力显微镜、X射线光电子能谱仪等分析了处理过程中碳纤维表面形态结构的变化,研究了阳极氧化及上浆处理对碳纤维的拉伸强度及其与环氧树脂间界面剪切强度(IFSS)的影响。结果表明:阳极氧化处理后,碳纤维表面平均粗糙度从48.0 nm增大到90.5 nm,而上浆后碳纤维平均粗糙度下降到32.3nm;经阳极氧化处理后,碳纤维表面碳(C)元素含量降低,氧(O)、氮(N)元素含量增加,—OH基团含量由14.43%增加到39.32%,而上浆后纤维表面—OH基团含量变化不大;在阳极氧化过程中随着氧化程度的提高,碳纤维的拉伸强度逐渐降低,但其IFSS逐渐升高;上浆对碳纤维拉伸强度影响不大,但上浆剂中较高的活性基团使得其IFSS进一步提高。  相似文献   

4.
Interfacial shear strengths (IFSS) between the fiber and the matrix in two SiC fiber–reinforced polycarbonate (PC) composites (TFC) were investigated through the fragmentation method and the acoustic emission (AE) technique. Statistical analysis of SiC fiber tensile strength was performed mainly in terms of a Weibull distribution. The tensile strength and elongation for SiC fiber decreased with increasing gauge lengths, because of the heterogeneous distribution of flaws on the fiber surface. Using an amino-silane coupling agent, the IFSS showed significant improvement, in the range of 150%, under dry conditions. On the other hand, in the aspect of the environmental effect, the IFSS was improved about 170% under wet conditions (immersed in hot water at 85°C for 75 min). This is probably due to chemical and hydrogen bonds in the two different interphases in the SiC fiber/silane coupling agent/PC matrix system. In-situ monitoring of AE during straining of microspecimens showed the sequential occurrence of two distinct groups of AE data. The first group may result from SiC fiber breakages, and the second probably results from mainly PC matrix cracking. Characteristic frequencies coming from the failures of the fiber and the PC matrix were shown via fast Fourier transform (FFT) analysis. By setting an appropriate threshold level, a one-to-one correspondence between the number of AE events and fiber breakages was established. This AE method could be correlated successfully to the IFSS via the fragmentation technique, which can also applied to nontransparent specimens.  相似文献   

5.
Carbon nanotube (CNT) fibers spun from CNT arrays were used as the reinforcement for epoxy composites, and the interfacial shear strength (IFSS) and fracture behavior were investigated by a single fiber fragmentation test. The IFSS between the CNT fiber and matrix strongly depended on the types of liquid introduced within the fiber. The IFSS of ethanol infiltrated CNT fiber/epoxy varied from 8.32 to 26.64 MPa among different spinning conditions. When long-molecule chain or cross-linked polymers were introduced, besides the increased fiber strength, the adhesion between the polymer modified fiber and the epoxy matrix was also significantly improved. Above all, the IFSS can be up to 120.32 MPa for a polyimide modified CNT fiber, one order of magnitude higher than that of ethanol infiltrated CNT fiber composites, and higher than those of typical carbon fiber/epoxy composites (e.g. 60–90 MPa). Moreover, the composite IFSS is proportional to the tensile strength and modulus of the CNT fiber, and decreases with increasing fiber diameter. The results demonstrate that the interfacial strength of the CNT fiber/epoxy can be significantly tuned by controlling the fiber structure and introducing polymer to optimize the tube–tube interactions within the fiber.  相似文献   

6.
The tendency of carbon fiber to nucleate the zation of poly(etherettterlcetone) (PEEK) has been evaluated by DSC and other techniques. As the carbon fiber content was increased, the supercooling necessary for PEEK crystallization decreased. The repeated melting (at 396°C) of the same PEEK sample results in a decrease of the number of nuclei for crystallization. At equivalent thermal histories, PEEK with carbon fiber was found to have a higher nucleation density than PEEK itself. The surface of carbon fibers and nuclei in the PEEK matrix compete for crystallization growth. As the holding time in melt was increased, the number of matrix spherulites formed on cooling decreased, hence a more pronounced transcrystalline region was developed. Correspondingly, the composites preheated in the melt for 100 min showed about two times the transverse tensile strength and strain-to-failure of those preheated for only 30 min. Corresponding fracture surface produced in tension showed that the former samples had a greater matrix adhesion to the carbon fiber than the latter. A strong interfacial bond is thus developed by crystallization on carbon fiber surface. Destroying nuclei in the PEEK matrix by long preheating enhances crystallization on the carbon fiber.  相似文献   

7.
In this preliminary study, micromechanical techniques were used to compare the interfacial properties of both carbon and glass fiber composites with two structurally different epoxy matrices (YD‐114 and YDF‐175) at ambient and relatively low temperatures (25°C and −10°C). Tensile modulus of elasticity for both epoxies was higher at lower temperature. Although both fibers exhibited more bimodality at lower temperature than at ambient temperature, glass fiber composites exhibited a statistically greater improvement in tensile strength. This may be attributed to differences in inherent flaws and rigidity. A decrement in stress was observed for YDF‐175 epoxy composites under cyclic loadings at both temperatures, which was attributed to lower interfacial shear strength (IFSS). In contrast to the IFSS of conventional YD‐114 epoxy composites, the IFSS of both the carbon and glass fibers/YDF‐175 epoxy composites studied was higher at the lower temperature. The microfailure pattern observed in microdroplet pullout tests was consistent with the other IFSS results. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

9.
We studied interfacial shear strength (IFSS) in carbon fiber (CF)‐reinforced poly (phthalazinone ether ketone) (PPEK) composites system, with emphasis on the influence of forming temperature of composite and sizing agent on CFs. To obtain apparent IFSS of CF‐reinforced PPEK composites shaped at various forming temperatures ranged from 20 up to 370°C, microbond test was carried out at single‐fiber composites. Results of microbond test showed that apparent IFSS was directly proportional to the difference between the matrix solidification temperature (forming temperature) and the test temperature and approximately 80% of the apparent IFSS in CF/PPEK composite system was attributed to residual radial compressive stress at the fiber/matrix interface. By sizing CF with sizing agent, the wettability of the fiber by the matrix was improved and the final apparent IFSS was also improved. POLYM. COMPOS., 34:1921–1926, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
The fiber–matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3‐aminopropyl)trimethoxysilane, [3‐(2‐aminoethylamino)propyl]‐trimethoxysilane, trimethoxy[2‐(7‐oxabicyclo[4.1.0]hept‐3‐yl)ethyl]silane and (3‐glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength results was performed in terms of statistical parameters. The tensile strength of silane‐treated basalt fiber is higher than the tensile strength of the untreated basalt fiber; this behavior may be due to flaw healing effect on the defected fiber surfaces. The IFSS results on the composites confirm that the interaction between the fiber modified with coupling agents and the bio‐based epoxy resin was much stronger than that with the untreated basalt fiber. POLYM. COMPOS., 36:1205–1212, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

12.
Several CVI-SiC/SiC composites were fabricated and the mechanical properties were investigated using unloading–reloading tensile tests. The composites were reinforced with a new Tyranno-SA fiber (2-D, plain-woven). Various carbon and SiC/C layers were deposited as fiber/matrix interlayers by the isothermal CVI process. The Tyranno-SA/SiC composites exhibited high proportional limit stress (∼120 MPa) and relatively small strain-to-failure. The tensile stress/strain curves exhibited features corresponding to strong interfacial shear and sliding resistance, and indicated failures of all the composites before matrix-cracking saturation was achieved. Fiber/matrix debonding and relatively short fiber pullouts were observed on the fracture surfaces. The ultimate tensile strength displayed an increasing trend with increasing carbon layer thickness up to 100 nm. Further improvement of the mechanical properties of Tyranno-SA/SiC composites is expected with more suitable interlayer structures.  相似文献   

13.
Abstract

Effects of halloysite nanotube (HNT) loading of up to 2% in epoxy resin on its mechanical properties were characterized. The interfacial property of the resin with carbon fiber nanocomposite was also studied. Single fiber composite (SFC) technique was used to characterize the carbon fiber/epoxy resin interfacial shear stress. Carbon fibers were also coated with ammonia/ethylene plasma polymer to obtain a thin coating of the polymer with amine groups that could react with the epoxy and thus improve the interfacial property. The results indicated that the Young’s modulus of HNT containing nanocomposites increased slightly up to a loading of 0.25% after which it started to decrease. The tensile strength, however, steadily decreased with increasing of HNT loading although the fracture strain did not change significantly. This might be related to the nanotube shape, size and clustering. The interfacial shear strength (IFSS) was also increased slightly with HNT loading. The ethylene/ammonia plasma polymer coated fibers exhibited significantly higher IFSS by over 150%, independent of the HNT loading. The highest IFSS obtained was almost 79 MPa for plasma treated fibers. The results suggest that the carbon fiber/epoxy interface is not affected by the incorporation of up to 1.5% of HNT. Furthermore, the fiber surface modification through plasma polymerization is an effective method to improve and control the IFSS.  相似文献   

14.
Studies on the high temperature sorption of caprolactam by polymer resins and their composites have been conducted. The systems investigated were glass fiber reinforced (GFR) poly(phenylene sulfide) (PPS), polyetheretherketone (PEEK) neat resin, GFR PEEK and carbon fiber reinforced (CFR) PEEK. To measure changes of caprolactam sorption, melting behavior, mechanical properties, and fracture surface morphology were determined. Absorption of caprolactam by the PEEK composites was 30 to 40 percent less than by the neat resin. This is attributed to the fibers, which acted to constrain the matrix and thus limit its swellability. Reductions in melt temperature, percent crystallinity, ultimate tensile strength, and modulus were observed following exposure to the chemical environment. The loss of strength and stiffness was a consequence of the degradation of the matrix/fiber interface by the sorbed caprolactam.  相似文献   

15.
Bioresource natural sisal fiber (SF) was used to prepare single fiber‐reinforced isotactic polypropylene (iPP) composites. Three kinds of interfacial crystalline morphologies, spherulites, medium nuclei density transcrystallinity (MD‐TC) and high nuclei density transcrystallinity (HD‐TC), were obtained in the single fiber‐reinforced composites by implementing quiescent or dynamic shear‐enhanced crystallization and by modulating the compatibility interaction between SF and iPP. The development of interfacial shear strength (IFSS) during the interfacial crystallization process was demonstrated for the first time using a combination of single‐fiber fragmentation testing and optical microscope observation. A close correlation between IFSS and morphological characteristics of interfacial crystallization was well elucidated. The increases in IFSS were very different for spherulitic, MD‐TC and HD‐TC morphologies. The highest IFSS obtained was 28 MPa, after the formation of HD‐TC, which was about 62% of the tensile strength of neat iPP (45 MPa). These results offer powerful and direct evidence that interfacial crystallization could play an important role in the enhancement of interfacial adhesion of real SF/iPP composites. © 2013 Society of Chemical Industry  相似文献   

16.
This article aims to improve interfacial properties of carbon fiber‐reinforced poly(phthalazinone ether ketone) (PPEK) composites by means of preparing carbon nanotube (CNT)/carbon fiber hybrid fiber. XPS was used to characterize the chemical structure of unsized carbon fiber and SEM was used to observe the surface topography of carbon fibers. Specific area measurement, dynamic contact angle, and interfacial shear strength (IFSS) testing were performed to examine the effect of CNT on the interfacial properties of carbon fiber/PPEK composites. By the introduction of CNT to the interphase of carbon fiber‐reinforced PPEK composites, an enhancement of IFSS by 55.52% was achieved. Meanwhile, the interfacial fracture topography was also observed and the reinforcing mechanism was discussed. POLYM. COMPOS., 36:26–33, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
聚醚醚酮纤维的拉伸定形后处理研究   总被引:2,自引:0,他引:2  
通过熔融纺丝制得聚醚醚酮(PEEK)纤维,并采用差示扫描量热仪(DSC)、声速取向测量仪、热重分析仪、单纱电子强力仪分别研究了干热拉伸及热定形处理对PEEK纤维结晶和取向、热稳定性及力学性能的影响。结果表明:随着热拉伸倍数增大,PEEK纤维取向度、结晶度增加,纤维的断裂强度增加,断裂伸长减小;PEEK纤维的热拉伸温度应选在200~240℃,热定形温度应为220~260℃;PEEK纤维的重结晶主要是在热拉伸过程中完成,热定形则进一步完善纤维的结晶结构;经过后处理,PEEK纤维的断裂强度可达到6.12cN/dtex;且具有优异的热稳定性能,热分解温度高达505℃,后处理几乎不影响PEEK纤维的热稳定性。  相似文献   

18.
Adhesion in composite materials is often quantified using the single fiber fragmentation (SFF) test. While this method is believed to provide accurate values for the fiber–matrix interfacial shear strength (IFSS), these may not accurately reflect the macroscopic mechanical properties of specimens consisting of tows of thousands of tightly spaced fibers embedded in a resin matrix. In these types of specimens, adhesion may be mitigated by fiber twisting and misalignment, differences in the resin structure in the confined spaces between the fibers and, most importantly, by any incompleteness of the fiber wetting by the resin. The present work implements fiber band fragmentation (FBF) testing to obtain effective interfacial shear strengths, whose values reflect the importance of these factors. The fiber fragmentation in these specimens is tracked through the counting and sorting of acoustic emission (AE) events occurring during the tensile testing of the specimen and yields the average critical fiber fragment length. AE results, in conjunction with stress-strain data, show that fiber breakage events occur at acoustic wavelet amplitudes substantially greater than those generated by fiber/matrix debonding. Kelly–Tyson analysis is applied, using the measured critical fiber fragment length together with known values for the fiber diameter and tensile strength to yield the effective IFSS. FBF tests are performed on carbon fiber/poly(vinyl butyral) (PVB) dog-bone fiber-bundle systems, and effective IFSS values substantially lower than those typically reported for the single fiber fragmentation testing of similar systems are obtained, suggesting the importance of multi-fiber effects and incomplete fiber wetting.  相似文献   

19.
A floating catalyst chemical vapor deposition (CVD) unit was utilized to grow CNT onto the surface of carbon fiber (CF). The surface morphology of the resultant fibers, CNT population density and alignment pattern were found to be depended on the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. In contrast to the neat‐CF reinforced composites, improved interfacial shear strength (IFSS) between CF and matrix were obtained when the surface of CF was coated by CNT. Particularly, CF treatment condition for CNT‐coating with 700°C reaction temperature and 30 min reaction time has shown a considerable increase in IFSS approximately of 45% over that of the untreated fiber from which it was processed. The proper justification of fiber–matrix adhesion featured by composite interfacial properties was explained through IFSS. POLYM. COMPOS., 36:1941–1950, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The effect of crystallinity differences induced by mold wall temperature and annealing on mechanical behavior is evaluated for poly(etheretherketone) (PEEK) resin and its composites. The systems investigated were neat PEEK, glass fiber (GF) reinforced PEEK, and carbon fiber (CF) reinforced PEEK. Both composite systems were reinforced with 10, 20, and 30 wt% fiber. The degree of crystallinity (Xc) of PEEK was found to increase by processing at higher mold temperatures, by annealing, and by fiber length reductions, which appears to indicate the ability of short fibers to nucleate the crystallization of PEEK under favorable thermal conditions. Improvements in Young's modulus and strength together with ductility reductions are generally obtained as crystallinity increases in both neat PEEK and its composites. The contribution of crystallinity to mechanical behavior is significant only for neat PEEK and PEEK reinforced by 10% fiber. SEM micrographs reveal that this is due to a change in failure mode. When PEEK is reinforced by carbon fibers or by 20–30% glass fibers, a macroscopic brittle mode of failure is observed irrespective of matrix crystallinity, and mechanical behavior is principally determined by the nature and content of the reinforcing fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号