首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聂豪  熊昕  郭原东  陈小辉  张上 《现代电子技术》2020,(24):110-112+116
针对传统的异常行为检测算法仅使用RGB图像作为网络的输入,而未考虑到视频序列中隐藏运动信息的问题,文中提出一种基于双流卷积神经网络的视频异常行为检测算法。该算法分别使用RGB图像与视频帧间的光流信息作为两个网络分支的输入来学习空间维信息与时间维信息,并使用长短时神经网络来建模长时视频帧间的依赖关系,从而得到最终的行为分类结果。仿真测试结果表明,所提出的方法在UCSD Ped1、Shanghai Tech和Pedestrian 2数据集上均能取得较好的识别效果,且使用帧间运动信息能够显著提升异常行为检测性能。  相似文献   

2.
杨亚虎  王瑜  陈天华 《电讯技术》2021,61(2):203-210
针对复杂场景下远程视频监控图像异常检测困难、传统算法功能单一(仅针对某种特定场景或某种异常图像进行检测)等问题,提出一种基于深度学习的全自动远程视频异常图像检测方法。首先采用Xavier方法对自行设计的卷积神经网络(Convolutional Neural Network,CNN)的参数进行初始化,然后将标准化后的视频差分图送入CNN的输入层,通过特征提取及下采样,最后在CNN的输出层获得远程视频异常图像检测结果。实验结果表明,该方法可以对远程视频监控中突然出现遮挡、模糊和场景切换等多种异常同时进行实时在线检测,准确率可达88.75%。  相似文献   

3.
张珂珂  单玉刚  袁杰 《光电子.激光》2021,32(12):1345-1352
随着日益突出的公共安全问题和迅速增长的视频数据流量,智能化的视频监控异常行为检测成为计算机视觉方向的研究热点。由于监督学习下的异常行为检测训练效果易受视频监控数据集分布不平衡影响,本文采用无监督学习方法得到具有时空间分辨率的异常行为检测效果。提出基于多流形谱聚类的异常行为检测方法,利用图像特征点列构建时序信息特征,利用流形学习构建空间信息特征,最终利用谱聚类方法无监督地得到视频异常行为检测结果。在UCSD数据集上进行实验验证,本文方法具有较好的检测性能和计算速度。  相似文献   

4.
基于深度学习的异常事件检测   总被引:2,自引:0,他引:2       下载免费PDF全文
闻佳  王宏君  邓佳  刘鹏飞 《电子学报》2020,48(2):308-313
面对复杂场景下异常事件检测的准确率偏低的情况,本文提出一种基于深度学习的异常事件检测方法,并将此方法扩展为异常事件分类方法.利用神经网络模型提取特征,将群体发散聚集事件,群体密集聚集事件,群体逃散事件和追赶事件这4种异常事件进行检测和分类.通过PKU-SVD-B测试集对训练出来的模型进行测试实验,并在UMN数据集上与几种方法做了对比实验,验证了本文提出的基于深度学习的异常事件检测算法,在适应多种不同场景的前提下,对多种异常事件检测的准确率很高,表明训练出来的模型对异常事件检测具有极强的泛化能力.  相似文献   

5.
在信息技术快速发展的背景下,视频监控系统的出现,需要实现视频对象异常行为分析模块的实现。同样,借助系统深度学习设计的优化,从而为相关的领域运用提高技术保障。在构建视频对象和深度学习的异常行为分析系统上,其不仅能够让监控系统实现现代化建设与智能化发展,同时也能减少相应的视频对象分析工作量,为部分特殊的视频监管系统的发展提供重要的技术支持。基于此,文章主要对视频对象和深度学习的异常行为分析系统设计和实现进行研究分析,旨在通过对系统设计与实现过程进行详细阐述,为以后类似的研究提供一些参考建议。  相似文献   

6.
7.
8.
针对异常检测系统检测率低,特征提取困难等问题,提出了一种基于深度特征学习的异常检测方法。该方法通过构建具有多隐层的深度神经网络模型,学习数据的特征表达,充分刻画数据的丰富内在信息,从而提高异常检测的准确率。文章实验结果表明,采用该方法可以有效地学习到数据的本质特征,并显著提高异常检测方法的检测率。  相似文献   

9.
10.
随着互联网技术的快速发展和普及,网络攻击和威胁已经渗透到我们生活的方方面面,网络安全成为人们关注的焦点.在面对网络攻击的研究中,入侵检测作为保证网络安全的一道防线,起着至关重要的作用.针对当前入侵检测收集的各类数据集中存在的数据不平衡问题,提出了一种基于深度学习的平衡数据生成模型,利用数据生成模型生成平衡数据集,使用这...  相似文献   

11.
为了满足对大规模视频数据的异常行为检测的需求,基于视频帧重建和帧预测的方法被广泛研究.但由于监控视角下背景环境是几乎不变的,因此会浪费大量的资源在不变的背景上,同时也不利于检测目标信息的提取.为了解决这个问题,本文使用无监督学习的视频帧预测策略,利用生成对抗网络学习正常行为的特征以生成效果较好的预测帧,并且拟采用注意力驱动损失来缓解异常行为检测中前景目标与背景环境失衡的问题,同时使用空间-通道注意力机制(CBAM)来增强模型生成器的预测效果.经在公共数据集UCSD Ped1和UCSD Ped2的测试和验证,在Ped1数据集上的检测精度达到了83.5%,在Ped2数据集上的检测精度达到了95.8%.与经典的异常行为检测算法以及原始基于生成式对抗网络异常检测算法比较,本文所采用的方法进一步提高了异常行为检测的准确率.  相似文献   

12.
多变量时间序列异常检测是指从相互关联的多个单变量时间序列中识别不正常的事件或行为的过程。现有的多变量时间序列异常检测方法在应用到新领域时,由于样本分布差异导致检测性能下降。而重新训练模型需要大量新领域的标注数据,且不能有效利用源领域的领域知识。针对这一问题,提出了一种基于深度迁移学习的多变量时间序列异常检测框架,该框架设计了编码器-解码器结构来提取多变量时间序列的特征,同时通过最小化嵌入层向量的距离来减小领域分布差异。基于该框架,提出一种基于ConvLSTM和最大均值差异(MMD)的多变量时间序列异常检测迁移学习方法,并利用解码后的重构误差检测多变量时间序列中的异常。最后,在服务器和空气质量两个多变量时间序列数据集上进行了实验。实验结果显示,目标域训练样本较少时,所提方法在迁移后的检测F1值比迁移前分别提升1.8%和4.2%。对比直接在目标域少量样本上训练模型,F1值提升了约9%。实验表明,所提迁移学习框架和方法对于有效提升多变量时间序列异常检测的性能。  相似文献   

13.
行人异常行为分析是视频监控领域中重要的研究方向.从基于规则、基于模型两方面对行人异常行为检测算法进行归纳总结,根据判定方式将算法分为阈值判定和分类判定,比较了各类算法的优势和不足,同时对使用较多的数据库进行了总结,最后讨论了异常行为研究在实际应用和未来研究中应该考虑的问题.  相似文献   

14.
行为异常识别与检测在安防领域中发挥着重要的作用,但针对传统特征提取的方法,提取特征智能化低且准确率不高,本文采用一种3D卷积神经网络中融合LSTM神经网络的模型,进行行为特征提取以及分类.利用公开的数据集进行实验测试,实验结果表示,该融合模型有效提高了分类准确识别率.  相似文献   

15.
针对医疗财务系统中数据规模庞大,而传统的数据检测手段难以发现其中细微异常数据的问题,设计了一套智能化的异常数据检测系统.该系统通过对异常数据的模式分析,并基于差异分析与全局分析的融合检测原理,实现了在海量数据中对细微异常数据的精确检测.在该检测系统的总体框架下,采用Wolpertinger架构,分别设计了作动网络、K近...  相似文献   

16.
针对校园封闭管理下的学生翻越围栏、偷取外卖等现象,提出一种基于YOLOv5的校园围栏场景下行人异常行为检测系统。该系统首先对监控视频中提取的图像进行网络训练,模型训练完成后以此来检测视频中的翻越、攀爬栅栏围墙等异常行为。当检测到与围栏距离过近的人员存在疑似异常行为时,系统触发警报模块,警示学生保持与围栏间的距离。  相似文献   

17.
基于深度学习的目标检测研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
罗会兰  陈鸿坤 《电子学报》2020,48(6):1230-1239
目标检测是计算机视觉领域内的热点课题,在机器人导航、智能视频监控及航天航空等领域都有广泛的应用.本文首先综述了目标检测的研究背景、意义及难点,接着对基于深度学习目标检测算法的两大类进行综述,即基于候选区域和基于回归算法.对于第一类算法,先介绍了基于区域的卷积神经网络(Region with Convolutional Neural Network,R-CNN)系列算法,然后从四个维度综述了研究者在R-CNN系列算法基础上所做的研究:对特征提取网络的改进研究、对感兴趣区域池化层的改进研究、对区域提取网络的改进研究、对非极大值抑制算法的改进研究.对第二类算法分为YOLO(You Only Look Once)系列、SSD(Single Shot multibox Detector)算法及其改进研究进行综述.最后根据当前目标检测算法在发展更高效合理的检测框架的趋势下,展望了目标检测算法未来在无监督和未知类别物体检测方向的研究热点.  相似文献   

18.
基于视频数据的深度预测学习(以下简称"深度预测学习")属于深度学习、计算机视觉和强化学习的交叉融合研究方向,是气象预报、自动驾驶、机器人视觉控制等场景下智能预测与决策系统的关键组成部分,在近年来成为机器学习的热点研究领域.深度预测学习遵从自监督学习范式,从无标签的视频数据中挖掘自身的监督信息,学习其潜在的时空模式表达....  相似文献   

19.

针对网络流量异常检测过程中提取的流量特征准确性低、鲁棒性差导致流量攻击检测率低、误报率高等问题,该文结合堆叠降噪自编码器(SDA)和softmax,提出一种基于深度特征学习的网络流量异常检测方法。首先基于粒子群优化算法设计SDA结构两阶段寻优算法:根据流量检测准确率依次对隐藏层层数及每层节点数进行寻优,确定搜索空间中的最优SDA结构,从而提高SDA提取特征的准确性。然后采用小批量梯度下降算法对优化的SDA进行训练,通过最小化含噪数据重构向量与原始输入向量间的差异,提取具有较强鲁棒性的流量特征。最后基于提取的流量特征对softmax进行训练构建异常检测分类器,从而实现对流量攻击的高性能检测。实验结果表明:该文所提方法可根据实验数据及其分类任务动态调整SDA结构,提取的流量特征具有更高的准确性和鲁棒性,流量攻击检测率高、误报率低。

  相似文献   

20.
亢洁  田野  杨刚 《红外技术》2022,44(12):1316-1323
针对人群异常行为检测任务中存在的算法复杂度较高,重叠遮挡等带来的检测精度低等问题,本文提出一种基于改进SSD(Single Shot Multi-box Detector)的人群异常行为检测算法。首先采用轻量级网络MobileNet v2代替原始特征提取网络VGG-16,并通过可变形卷积模块构建卷积层来增强感受野,然后通过将位置信息整合到通道注意力中来进行特征增强,能够捕获空间位置之间的远程依赖关系,从而可以较好处理重叠遮挡问题。实验结果表明,本文提出的算法对人群异常行为具有较好的检测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号