首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The prediction of nominal strength is very important in the design and evaluation of materials especially polymer matrix composites. Various cohesive laws forms are successfully used in predicting the nominal strength of laminated composite structures. For composite structures, fracture toughness is dominated parameter when using cohesive laws to predict their nominal strength. In spite of complex reported models, this study propose an easy simple model to predict the fracture toughness of multidirectional composite laminates using the fracture toughness of the 0° ply ones. This model is mainly based on the geometry of fiber orientation and linear elastic fracture mechanics and uses the fracture toughness of the 0° ply obtained from compact tension test specimens. A good prediction is obtained by comparing the model results with experimental data which are obtained from center‐cracked specimens manufactured using different lay‐ups orientations and materials. POLYM. ENG. SCI., 54:234–238, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
This paper reports the responses of basalt unsaturated polyester laminates under static three‐point bending loading and low‐velocity impact. Three kinds of composite materials, unidirectional (0°), cross‐ply (0°/90°) and woven laminates were considered. The laminates were fabricated by layup process and hot pressed under pressure. Static three‐point bending tests and low‐velocity impact tests were conducted to obtain the force–deflection, force–time, deflection–time, velocity–time, and energy–time curves. The results showed that unidirectional (0°) laminates carried more load during static loading, but in the event of dynamic loading, cross‐ply, and woven laminates were more superior. It was observed that the failure of 0° laminates was along the fiber direction while for cross‐ply and woven, the damage was localized, around the impacted locations. From the different combinations of unidirectional (0°), cross‐ply (0°/90°) and woven lamina, the impact behaviors could be optimized with the lowest area density. POLYM. COMPOS., 35:2203–2213, 2014. © 2014 Society of Plastics Engineers  相似文献   

4.
Multi‐axial multi‐ply fabric (MMF) composites are becoming increasingly popular as reinforcing materials in high‐performance composites due to their high mechanical properties. This work aimed to study the effects of three variable parameters including fiber contents, numbers of plies, and layer orientations on the mechanical properties of MMF composites. Unidirectional carbon fibers and a two‐part epoxy resin were employed to produce the composite laminates using the manual lay‐up process. It was found that the mechanical properties of composites made with 5‐ply were slightly greater than 3‐ply composites. However, there was no highly significant difference between them. Generally, the angle‐ply of the composites showed the greatest effect on the mechanical properties compared with number of plies and layer orientations. The significant improvements in mechanical properties of the composites were further supported using scanning electron microscopy (SEM). Morphologies of the tensile fracture surfaces of composites revealed that the presence of fiber pulled out results in the creation of voids between the fibers and matrix polymer. This causes the mechanical properties of the composites to be reduced. Finally, the enhancement of mechanical properties of composites clearly confirmed that angle‐ply layer (0°,?35°,0°,+35°,0°) had the most significant reinforcing effect among other parameters evaluated. POLYM. ENG. SCI., 54:2676–2682, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Cross-ply tapered/stepped laminates with taper angles of 1 and 2° between the top and bottom surfaces were fabricated using T300/943 graphite/epoxy by compression molding. Ply terminations were done internally within the laminate and externally on the surface of the laminate at various cross-sections in order to obtain the taper. Equivalent cross-ply specimens with internal and external ply terminations, respectively, were tested in three point bending. The bending stiffness of the equivalent corss-ply are nearly equal, while the failure modes are significantly different. The tapered laminates with internal ply terminations failed due to a series of delaminations originating at the step corners of the 0° plies. Macroscopically, the specimens with internal ply term nations failed by tensile fracture of the outer plies at relatively higher loads.  相似文献   

6.
Unidirectional (UD) hybrid laminates based on glass fibers (GF) and high performance polyethylene fibers (PEF) were prepared with partially polymerized methyl methacrylate (MMA) at room temperature followed by heating at 55°C (well below the softening point of PEF) for 2 h. Izod impact strength of the composites was then measured. An interesting observation of the study was the change in impact strength that was largely dependent on the position of GF and PEF ply/plies present within the hybrid laminates. When the ply/plies of PEF were at the impacted surface, the impact strength showed a higher value than that of the case when GF ply/plies were at the impacted surface of the hybrid laminates. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
《Polymer Composites》2017,38(10):2182-2191
This paper demonstrates the results of an experimental study on cross ply carbon/epoxy composite laminates fabricated from high temperature hardener HT972 subjected to impact loading at different velocities and temperatures. The carbon fiber reinforced plastic (CFRP) samples were impacted at velocities 1.5 m/s and 2.5 m/s, each at a temperature level of 30°C, 60°C, 90°C, and 120°C. The impact response of the material towards various velocities and temperatures was determined using impact parameters like peak force, absorbed energy, maximum deflection, and rebound velocity. Result reveals that the velocity and temperature play a significant role in the impact response of the material. The variation in the trend of Flexural After Impact (FAI) strength of composite laminates at different velocities and temperatures was determined using FAI test and these results were further correlated with impact results. The dominating failure modes affecting the residual strength of the samples were found using acoustic emission (AE) monitoring. POLYM. COMPOS., 38:2182–2191, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
《Polymer Composites》2017,38(8):1549-1558
A new type of nanocomposites based on a high performance bisphenol‐A phthalonitrile resin and surface‐modified alumina nanoparticles was prepared by a hot compression molding technique. The effect of adding different amounts of the reinforcing phase on the thermal and mechanical properties of the resulting nanocomposites was investigated. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 15 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced, reaching 346°C and 3.4 GPa, respectively. The tensile strength and modulus as well as the microhardness values increased with the increasing amount of the nanoparticles. The tensile modulus calculations were investigated using Series, Halpin‐Tsai, and Kerner models. Haplin‐Tsai model was found to reproduce the experimental data with the best accuracy. Estimation of the nanofillers shape factors for both Haplin‐Tsai and Kerner models significantly improved the precision of the cited predictive models. The fractured surface of the nanocomposites analyzed by SEM exhibited homogeneous and rougher surfaces compared to that of the pristine resin. Finally, this new kind of nanocomposites is a highly attractive candidate for use in advanced technological applications such as the aerospace and military fields.POLYM. COMPOS., 38:1549–1558, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
The influence of hybridization with stacking sequence variation on static stiffness, strength, ultimate strain and residual properties after thermal cycling of graphite/Kevlar 49/ epoxy and graphite/S-glass/epoxy angle-ply laminates was investigated. Tensile stress-strain curves to failure and uniaxial tensile properties were determined for all laminates. Theoretical predictions of modulus, Poisson's ratio and ultimate strain were made, based on linear lamination theory, constituent ply properties and measured strength. Reasonably good agreement was found. Stacking sequence variation showed no significant systematic influence on the measured results. Specimens containing only two 0-degree Kevlar or S-glass plies behaved linearly to failure. Specimens containing four 0-degree Kevlar or S-glass plies displayed characteristic non-linearity. One group of laminates was subjected to a tensile load and to 100 thermal cycles between room temperature and 280°F, and another group to a tensile load and 100 thermal cycles between room temperature and ?100°F. All surviving specimens were tested statically to failure to determine residual properties which were compared with the properties of uncycled specimens. Specimens containing two Kevlar or two S-glass plies behaved linearly to failure. Residual moduli in these specimens were lower than for uncycled specimens but residual strengths and ultimate strains were higher. Specimens with four Kevlar or four S-glass plies showed some nonlinear behavior. No significant differences were found between residual and uncycled values for modulus and strength.  相似文献   

10.
This paper focuses on the contributions of diversities of strain rate and orientations for aggravating the diversities of micro failure behaviors on carbon fiber reinforced polymer (CFRP) laminates. A miniature horizontal type tensile tester is employed to conduct experiments with strain rate ranging from 2.6 × 10−6 s−1 to 2.6 × 10−3 s−1. The CFRP laminates are obtained based upon a thermoset toughened epoxy matrix (termed CF/Epoxy) with ply orientations of (0°/0°) and (0°/90°). Significant differences in deformation behaviors of CFRP laminates are determined through tests. The study clearly reveals the strain rate-dependent deformation modes of CFRP laminates, involving pure fiber fracture, epoxy crack with stepped surface and interface failure with residual voids, determines the “low-high-low” variation tendency of Young's modulus and strength as a function of strain rate. Ply orientation-dependent differences in deformation behaviors are also investigated via severe interfacial shearing effect. A unified model consisted of four deformation modes to is clarified to analyze the complexity of CFRP laminates failure mechanism.  相似文献   

11.
The influence of the porosity on the static mechanical strength of the carbon fiber fabric reinforced epoxy composites laminates was investigated. The tensile, compressive, bending, and interlaminar strength test on the CFRP laminates with porosity of 0.33% and 1.50% were conducted and simulated by a finite element analysis model. The article proposes the failure criterion of the static mechanical strength of the fabric fiber reinforced composites based on the improved Hashin failure criterion that is suitable for the undirectional composite laminates. The basic composite strength parameters are used to evaluate the mechanical properties of CFRP laminates with different porosities. A finite element analysis model is established by using software ABAQUS™ combined with the sudden stiffness degradation model. The experiment results show that the tensile, compressive, bending, and interlaminar strength decrease with the increasing porosities. The tensile, compressive, bending, and interlaminar strength of the fabric carbon fiber reinforced epoxy composites laminates are simulated accurately by the finite element model. POLYM. COMPOS., 14–20, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
The three‐dimensional anisotropic moisture absorption behavior of quartz‐fiber‐reinforced bismaleimide (BMI) laminates is investigated by collecting 21 months of experimental gravimetric data. Laminates of six, twelve, and forty plies and various planar aspect ratios are used to determine the three‐dimensional anisotropic diffusion behavior when exposed to full immersion in distilled water at 25°C. The long‐term moisture absorption behavior deviates from the widely used Fickian model, but can be accurately captured by the three‐dimensional, anisotropic hindered diffusion model (3D HDM). Excellent agreement is achieved between experimental gravimetric data and the 3D HDM for all laminate thicknesses. Recovered model parameters are shown to slightly vary with laminate thickness due to the small changes in the cured‐ply thickness. However, model parameters identified for a given laminate thickness are observed to accurately predict the absorption behavior of samples with different planar dimensions. Equilibrium moisture content of 1.72, 1.69, and 1.84% and corresponding diffusion hindrance coefficients of 0.807, 0.844, and 0.671 are recovered for six, twelve, and forty‐ply laminates, respectively, thus confirming strong non‐Fickian behavior. Moisture absorption parameters may be determined successfully at 16.5 months of immersion, before reaching approximately 85% of the equilibrium moisture content at 21 months. Subsequent gravimetric measurements up to 21 months are consistent with the predicted long‐term behavior. POLYM. ENG. SCI., 54:137–146, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Basalt fiber is an emerging alternative reinforcement to glass or carbon depending upon the application. An important contributing parameter to ultimate performance of any composite is the fiber–‐matrix interface, to which toughness and compressive strength are intimately related. To better understand this matrix fiber interaction in controlling properties, we compared different modification strategies and the impact upon the properties of composites. Strategies focussing upon mechanical interlocking through increased surface roughness and covalent chemical bonding using sol/get methods were explored. Combined methods were also used to explore synergistic behavior as well as the use of aliphatic triethylenetetramine (TETA) to react with any covalently attached epoxy groups. Results from single ply composites showed that when the properties were fiber or fiber/matrix dominated, the sol/gel or epoxy silane method gave the largest improvement in ultimate tensile strength increasing 66% and 27% for uni‐weave 0° and 45° laminas. The combined surface modification methods exhibited increases of 45% and 13% for the same laminas. When properties were matrix dominated, the combined strategies produced the highest improvements in ultimate tensile strength of about 55% compared with 37% for sol/gel modification. For 16‐ply plain weave laminates, epoxy silane surface treatments produced the greatest improvements in compressive and interlaminar shear strengths, increasing 52% and 21%, respectively. This correlated with fiber‐ and fiber/matrix‐dominated results from single ply laminas. The combined treatment using TETA however decreased shear and compressive strength by about 20%, while scanning electron microscopy (SEM) evaluation and dynamic mechanical thermal analysis (DMTA) attributed this to increased resin ductility and plasticization. © 2013 Society of Plastics Engineers  相似文献   

15.
This study introduces carbon nanotube buckypaper (CNTBP) into the easily fractured sites of [0°]16 and [0°/90°]4S composite laminates, and comparatively explores how the CNTBP affects the flexural properties of the laminates at 25, ?15, and ?55 °C. Compared to the base [0°]16 and [0°/90°]4S laminates at the same temperature, improvements of the flexural strengths in the order of 4.0–15.3% and 6.5–31.0% are respectively obtained from the corresponding CNTBP‐reinforced [0°]16 and [0°/90°]4S laminates. Importantly, the lower the temperature is, the higher the strength improves. In fact, the CNTBP has little effect on the flexural moduli of the studied laminates, although there is an increasing trend with decreased temperature. Moreover, the introduced CNTBP would significantly change the fracture mechanism of the laminates at low temperature. The present work reveals that the CNTBP exhibits more positive reinforcing capability to the polymer matrix‐based composite laminates at relatively low temperatures.  相似文献   

16.
根据经典层合板理论,层合板(±45°/90°/0°)s是准各向同性层合板,其拉伸刚度在板面内各个方向上都相同,而拉伸强度是随偏轴角θ改变而变化,即强度方面不具有各向同性的特点。本文首先研究(±45°/90°/0°)s这种准各向同性层合板拉伸强度在偏轴角θ从0°至45°之间的变化情况,然后通过分别改变单层板强度参数和弹性常数来研究该层合板的拉伸强度的变化情况,并分析其破坏形式。最后与NCF材料的试验结果进行了比较。  相似文献   

17.
The effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates with ply orientations of (02, 902)2s and (902, 02)2s are examined. The relative improtance of shear and tensile stresses is examined by varying the span-to-depth ratios of flexural test specimens from 8 to 45 Acoustic emission singals are measured during the flexural tests in order to monitor the initiation and growth of damage. Optical microscopy is used to examine speciments for resin cracking, delamination, and fiber breaks after testing. Transverse matrix cracks and delaminations occur in all specimens, for regardless of ply orientation, span-to-depth ratio, or previous exposure of specimens to thermal and mechanical fatigue. A small amount of fiber tensile fracture occurs in the outer 0° ply of specimens with high span-to-depth ratios. Because of the complex failure modes, the flexural test results represent the “apparent” strengths rather than the true flexural or shear strenghts for these cross-ply laminates. Thermal cycling of specimens prior to flexural testing does not reduce the apparent flexural strength or change the mode of failure. However, fewer acoustic events are recorded at all strins during flexural testing of specimens exposed to prior thermal cycling. High temperature thermal cycling (32–260°C, 100 cycles) causes a greater reduction in acoustic events than low temperature thermal cycling (?85 to 85°C, 500 cycles). Mechanical cycling (0–50% of the flexural strength, 100 cycles) has a similar effect, except that acoustic events are reduced only at strains less than the maximum strain applied during flexural fatigue. © 1994 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    Poly ether ether ketone (PEEK) polymer was extruded into filaments and cowoven into unidirectional hybrid fabric with glass as reinforcement fiber. The hybrid fabrics were then converted into laminates and their properties with special reference to crystallization behavior has been studied. The composite laminates have been evaluated for mechanical properties, such as tensile strength, interlaminar shear strength (ILSS), and flexural strength. The thermal behavior of the composite laminates were analyzed using differential scanning calorimeter, thermogravimetric analyzer, dynamic mechanical analyzer (DMA), and thermomechanical analyzer (TMA). The exposure of the fabricated composite laminates to high temperature (400 and 500°C) using radiant heat source resulted in an improvement in the crystallanity. The morphological behavior and PEEK resin distribution in the composite laminates were confirmed using scanning electron microscope (SEM) and nondestructive testing (NDT). Although DMA results showed a loss in modulus above glass transition temperature (Tg), a fair retention in properties was noticed up to 300°C. The ability of the composite laminates to undergo positive thermal expansion as confirmed through TMA suggests the potential application of glass–PEEK composites in aerospace sector. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117:1446–1459, 2010  相似文献   

    19.
    A statistical model has been proposed to predict the evolution of matrix cracking in the transverse lamina of cross‐ply laminates subjected to longitudinal tensile loading. The analytical model is based on a fracture mechanics approach which considers that the critical fracture toughness Gc of the 90° layers is not a constant but follows a Weibull distribution. Monte‐Carlo simulation technique is applied to predict the initiation and propagation of transverse cracking in terms of applied stress versus crack density. The effects of the thickness of the 90° layers on progressive damage and failure are also discussed in this study. Good agreements are reached between simulation and experimental results. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

    20.
    The low velocity impact response of laminated composites in ambient hygrothermal environments has been extensively investigated. This response, however, is not well understood when subjected to moisture cycling at elevated temperatures. In this current study, two types of glass fiber reinforced plastic (GFRP) laminates, unidirectional and crossply, were conditioned in a conditioning chamber for a maximum of eight moisture cycles at conditioning temperatures from 50°C to 100°C. Low velocity impact tests were conducted on the conditioned specimens and control specimens via an instrumented drop‐weight impact testing machine. The tension after impact (TAI) strength was investigated using an MTS machine. The equivalent damage size is obtained using an average stress criterion found in the literature. The effect of moisture cycling and conditioning temperatures on the low velocity impact response and residual load carrying capacity of GFRP laminates are evaluated via the test results.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号