首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ternary in situ polycarbonate (PC)/poly(acrylonitrile‐butadiene‐styrene) (ABS)/liquid crystalline polymer(LCP) composites were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix of composite specimens was PC/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these composites. The tensile, dynamic mechanical, impact, morphology, and thermal properties of the composites were studied. Tensile tests showed that the tensile strength of the PC/ABS/LCP composite in the longitudinal direction increased markedly with increasing LCP content. However, it decreased slowly with increasing LCP content in the transverse direction. The modulus of this composite in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PC/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the composites in both longitudinal and transverse direction decreased with increasing LCP content up to 15 wt %; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the composites tended to increase with increasing LCP content. Scanning electron microscopy observation and DMA measurement indicated that the additions of epoxy and MA copolymer to PC/ABS matrix appeared to enhance the compatibility between the PC and ABS, and between the matrix and LCP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2274–2282, 1999  相似文献   

2.
S.L. Sun  H.X. Zhang 《Polymer》2005,46(18):7632-7643
Glycidyl methacrylate (GMA) functionalized acrylonitrile-butadiene-styrene (ABS) copolymers have been prepared via an emulsion polymerization process. These functionalized ABS copolymers (ABS-g-GMA) were blended with poly(butylene terephthalate) (PBT). DMA result showed PBT was partially miscible with ABS and ABS-g-GMA, and DSC test further identified the introduction of GMA improved miscibility between PBT and ABS. Scanning electron microscopy (SEM) displayed a very good dispersion of ABS-g-GMA particles in the PBT matrix compared with the PBT/ABS blend when the content of GMA in PBT/ABS-g-GMA blends was relatively low (<8 wt% in ABS-g-GMA). The improvement of the disperse phase morphology was due to interfacial reactions between PBT chains end and epoxy groups of GMA, resulting in the formation of PBT-co-ABS copolymer. However, a coarse, non-spherical phase morphology was obtained when the disperse phase contained a high GMA content (≥8 wt%) because of cross-linking reaction between the functional groups of PBT and GMA. Rheological measurements further identified the reactions between PBT and GMA. Mechanical tests showed the presence of only a small amount of GMA (1 wt%) within the disperse phase was sufficient to induce a pronounced improvement of the impact and tensile properties of PBT blends. SEM results showed shear yielding of PBT matrix and cavitation of rubber particles were the major toughening mechanisms.  相似文献   

3.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
ABS-g-GMA增韧聚对苯二甲酸丁二醇酯的研究   总被引:5,自引:0,他引:5  
用甲基丙烯酸环氧丙酯((MA)接枝的丙烯腈/丁二烯/苯乙烯(ABs)接枝共聚物(ABS-g-GMA)改善聚对苯二甲酸丁二醇酯(PBT)的缺口冲击韧性。动态力学分析、差示扫描量热分析以及流变性能测试结果表明,GMA引入到ABS中,随GMA含量的增加,PBT与ABS的玻璃化转变温度相互靠近,PBT的熔点降低,共混体系的扭矩、温度提高,这些结果表明GMA提高了PBT与ABS之间的相容性;增容反应导致ABS在PBT基体中均匀、稳定分散,有利于共混物性能的改善;交联反应导致交联聚集网状结构的生成,使共混物性能变差。冲击强度结果表明,1%(质量含量。下同)GMA含量就可以导致PBT/ABS-g-GMA共混物冲击韧性显著改善,当ABS-g-GMA1含量为30%时,共混物冲击强度高达850J/m。  相似文献   

5.
The ternary blends of acrylate rubber (ACM), poly(butylene terephthalate) (PBT), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP but fixing the ratio of ACM and PBT, using melt mixing procedure. The influence of interactions on thermal and dynamic mechanical properties of the blends was investigated over the complete composition range. The techniques applied were Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), and dynamic mechanical analysis (DMA). The FTIR spectroscopy analysis showed reduction in the intensity of the peak corresponding to epoxy groups of ACM with increasing heating time at 290°C. This implies that there is a chemical reaction between the epoxy and end groups of PBT and LCP. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PBT blend, respectively. This further suggests the strong interfacial interactions between the blend components. In presence of ACM, the nucleating effect of LCP was more pronounced for the PBT phase. The thermogravimetric study showed improved thermal stability for the blends with the increasing LCP content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3904–3912, 2006  相似文献   

6.
Blends of poly(butylene terephthalate) (PBT) with three different thermotropic liquid crystalline polyesters (TLCPs) were prepared. The first TLCP (HBH-6) consists of diad aromaticester type mesogenic units and the hexamethylene spacers along the main chain, and the second (TB-S6) is a wholly aromatic polyester TLCP having alkoxy side groups on the terephthaloyl moiety. The last (TR-4,6) is an LC copolymer comsisting of triad aromatic ester type mesogenic units and two differents spacers; tetramethylene and hexamethylene units. Blends of TLCP with PBT were melt spum at different LCP contents and differnt draw ratios to produce monofilaments. For the HBH-6/PBT and TB-S6/PBT blends, the ultimate tensile strength showed a maximum value at the 5 wt% level of LCP in the blends, and then it decreased when the LCP content was increased up to 20%. On the other hand, the initial modulus monotonically increased with increasing LCP content in all cases. The blends with TB-S6 showed the highest tensile properties of the three blends systems. This can be ascribed to the highest rigidity of the polymer chain, which still carries relatively long alkoxy substituents that promote sufficient adhesion between the LCP and PBT matrix. When compared with the PBT fiber itself, the fibers obtained from the 5% TB-S6/PBT blends exhibited an improvement in tensile strength by > 25% and in tensile modulus by ~ 200%.  相似文献   

7.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

8.
Ternary in situ polycarbonate (PC)/polybutylene terephthalate (PBT)/liquid crystalline polymer (LCP) composites were prepared by injection molding. The liquid crystalline polymer used was a versatile Vectra A950. The matrix of composite was composed of PC/PBT 60/40 by weight. A solid epoxy resin (bisphenol type‐A) was used as a compatibilizer for the composites. Dynamic mechanical analysis (DMA) showed that epoxy resin was effective to improve the compatibility between PC and PBT, and between PC/PBT and LCP, respectively. Tensile tests revealed that the stiffness of composites shows little change with the LCP content up to 10 wt %. Above this concentration, the stiffness tended to increase with increasing LCP content. Furthermore, the tensile strengths appeared to increase with increasing LCP content, and their values were close to those predicted from the rule of mixtures. Scanning electron microscopic examination showed that LCP ribbons and short fibrils were developed in the composites containing LCP content ≤10 wt %. However, fine and elongated fibrils were formed in the skin and core sections of the composites when the LCP content reached 25 wt % and above. Thermogravimetric analysis indicated that the thermooxidative stability of the PC/PBT 60/40 blend tended to improve with increasing LCP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1827–1835, 1999  相似文献   

9.
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
Blends of PBT/ABS and PBT/ABS compatibilized with styrene‐acrylonitrile‐glycidyl methacrylate (SAG) copolymer were prepared by melt blending method. Grafting degree (GD) of ABS influences the morphology and mechanical properties of PBT/ABS blends. ABS can disperse in PBT matrix uniformly and PBT/ABS blends fracture in ductile mode when ABS grafting degree is more than 44.8%, otherwise, agglomeration takes place and PBT/ABS blends fracture in brittle way. On the other hand, the grafting degree of ABS has no obvious influence on the morphology of PBT/ABS blends and PBT/ABS blends fracture in ductile mode when SAG is incorporated since the compatibilization effect. However, PBT/SAG/ABS blends display much lower impact strength values comparing with PBT/ABS when the blends fracture in ductile way. Side reactions in PBT/SAG/ABS blends were analyzed and which were the main reason for the decrease of impact strength of PBT blends. Tensile tests show that the tensile strength and tensile modulus of PBT blends decrease with the increase of ABS grafting degree due to the higher effective volume. PBT/SAG/ABS blends display much higher tensile properties than PBT/ABS blends since the compatibilization effect. POLYM. COMPOS., 28:484–492, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
Poly(acrylonitrile-butadiene-styrene) (ABS)/polycarbonate (PC) blends reinforced with potassium titanate (K2Ti6O13) whiskers were prepared in a twin screw extruder followed by injection molding. The whiskers were pretreated with tetrabutyl orthotitanate prior to compounding. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the modulus of ABS/PC/K2Ti6O13 blend increased markedly with increasing whisker content. However, the variation of the modulus of ABS/PC/K2Ti6O13 blend with PC content followed a sigmoidal relation. In addition, the tensile strength of the blends containing 20 wt% PC tended to increase markedly with increasing whisker content. But the impact strength of the blends containing 20 wt% PC decreased rapidly with increasing whisker content. Dynamic mechanical analyses (DMA) results indicated that the storage modulus of the blends increased markedly with increasing K2Ti6O13 whisker content. Differential thermal analysis and thermogravimetric measurements showed that potassium titanate whiskers tend to induce chemical decomposition of PC during blending of the PC/whisker blends. However, the incorporation of ABS into PC was beneficial to reduce the PC decomposition during compounding with the whiskers.  相似文献   

12.
Ternary blends of poly(p-phenylenesulfide) (PPS), thermotropic liquid crystalline polyesteramide (LCP), and polysulfone (PSF) were investigated in terms of processing characteristics, blend morphology, and physical properties. In the incompatible PPS/LCP blends, LCP imparted a nucleating effect to the crystallization of PPS. Up to 10wt% LCP content, the tensile properties of PPS/LCP blends were enhanced with increasing LCP content, but they deteriorated if the LCP content exceeded 20wt%. Addition of a third component, PSF, to the 90/10 PPS/LCP blend promoted development of rodlike or threadlike fibrillar structure and orientation of the deformed LCP domains, which led to improvement of tensile strength up to 20%.  相似文献   

13.
A liquid crystalline polymer (LCP), Vectra B950, reinforced polycarbonate (PC) 60 wt%/polybutylene terephthalate (PBT) 40 wt% blend was studied using the injection molding process. Morphology and mechanical properties of ternary in situ LCP composites were investigated and compared with binary polycarbonate/Vectra B950 LCP composites. Good in situ fibrillation of LCP was observed in the direct injection-molded LCP composites. Preliminary results of this work indicate that addition of PBT improves skin-core distribution of LCP microfibrils in the matrix and also enhances adhesion between the matrix and Vectra B950, which contains terephthalic acid. The PC/PBT/LCP ternary system also exhibits lower viscosity than the PC/PBT blend and pure LCP. In a ternary system with 30 wt% of Vectra B950, tensile modulus and strength increase approximately threefold and twofold, respectively. The rule of mixtures (ROM) for continuous reinforcement can accurately represent the strengthening effects for the ternary LCP in situ composites. Generally, LCP reduces the ductility and impact strength of the thermoplastic blends; however, the relative loss is less in the ternary system than in the binary system.  相似文献   

14.
《合成纤维》2016,(2):13-18
利用环氧树脂(EP)与聚对苯二甲酸丁二醇酯(PBT)的相容性,考察了EP对共混物PBT/ABS-gGMA性能的影响。采用动态力学分析仪(DMA)、旋转流变仪、Haake流变仪和扫描电镜(SEM)研究共混物的性能。DMA、DSC和旋转流变仪的测试结果表明PBT与EP是相容的;流变性能测试结果表明EP对PBT/ABS-g-GMA共混体系起到增容作用;SEM观察结果发现少量的EP加入对共混物的相形态没有明显影响,分散相在PBT基体中均匀、稳定分散,而过量的EP使共混物中出现一些较大的相区,分散相发生团聚;力学性能测试结果表明适量的EP就能明显提高共混物的冲击性能,而过量的EP又会使共混物的冲击强度下降。  相似文献   

15.
In this study, the copolymers of methyl methacrylate-co-glycidyl methacrylate (MGD) with different epoxy contents and molecular weights, the styrene-co-glycidyl methacrylate (SGD) and methyl methacrylate-co-maleic anhydride (MAD) were synthesized. The synthesized copolymers, styrene-co-maleic anhydride (SMA) and styrene-acrylonitrile-co-glycidyl methacrylate (SAG) were used as compatibilizers to enhance the impact strength of the acrylonitrile butadiene styrene/poly(butylene terephthalate) (ABS/PBT). The effects of differences in the structure, reactive group type, and molecular weight of the compatibilizers on the mechanical properties, phase morphology, melt viscosity, thermal stability, and melting temperature of the blend were studied. The results showed that functionalized copolymers were successfully synthesized with high monomer conversions. Addition of the functionalized copolymers increased melt viscosity but did not considerably affect thermal stability, tensile strength, flexural strength and melting temperature of the ABS/PBT blends. The compatibilizers improved the dispersion of the PBT phase and prevented brittle fracture, thereby increasing the impact strength of the blend. Among the studied compositions, the ABS/PBT/MGD-5 blend exhibited the highest impact strength of 25.8 kJ/m2 and an appropriate melt flow index of 19.1 g/10 minutes. The compatibilizer should have an appropriate molecular weight to improve the interface bonding force. Regarding the melting viscosity, the reactive group content and compatibilizer dosage should be adjusted to ensure high impact strength.  相似文献   

16.
采用双螺杆挤出机制备了聚对苯二甲酸丙二酯(PTT)/丙烯腈-丁二烯-苯乙烯塑料(ABS)合金,研究了合金组成及增容剂环氧树脂(EP)和苯乙烯-丁二烯-马来酸酐共聚物(SBM)对合金相形态及力学性能的影响.结果表明,未加增容剂的PTT/ABS合金相畴粗大,相界面清晰,合金的拉伸强度、弯曲强度随ABS含量的增加而逐渐降低,...  相似文献   

17.
Binary blends of a reactive ethylene-based terpolymer with polybutylene terephthalate (PBT) and with a liquid crystalline polyester (LCP) were studied to clarify the possible interactions between the blended polymers. The aim was to determine the suitability of the reactive terpolymer containing epoxy reactivity as a compatibilizer in blends of polypropylene (PP) and these two polyesters. The binary blends exhibited increased viscosity during blending, changes in the crystallization of the PBT phase, and an intimate contact between the blended polymers, which pointed to strong interactions or chemical reactions between the compatibilizer and both PBT and LCP. FTIR analysis confirmed the reaction of the epoxide and formation of new esters. Most probably the carboxyl end groups of the polyesters reacted with the epoxy group of the compatibilizer. In the second part of the work the same terpolymer was shown to act as a compatibilizer in PP/PBT and PP/LCP blends. This behavior was based on good mixing with the PP phase and on the chemical reactivity or strong interactions with the polyesters demonstrated in the investigations on binary blends. Addition of 5 wt% of the compatibilizer improved the impact strength, especially in PP/PBT blends where synergistic behavior was found at compositions of 80/20 and 20/80. In PP/LCP blends, the compatibilizer significantly improved the impact strength of unnotched samples at 20 wt % LCP content. In both blends, the compatibilizer reduced the size of the dispersed domains and caused them to attach better in the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer (ABS‐g‐MA) was used as an impact modifier of polyamide 6 (PA6). Epoxy resin was introduced into PA6/ABS‐g‐MA blends to further improve their properties. Notched Izod impact tests showed that the impact strength of PA6/ABS‐g‐MA could be improved from 253 to 800 J/m with the addition of epoxy resin when the ABS‐g‐MA content was set at 25 wt %. Differential scanning calorimetry results showed that the addition of epoxy resin made the crystallization temperature and melting temperature shift to lower temperatures; this indicated the decrease in the PA6 crystallization ability. Dynamic mechanical analysis testing showed that the addition of epoxy resin induced the glass‐transition temperature of PA6 and the styrene‐co‐acrylonitrile copolymer phase to shift to higher temperatures due to the chemical reactions between PA6, ABS‐g‐MA, and epoxy resin. The scanning electron microscopy results indicated that the ABS‐g‐MA copolymer dispersed into the PA6 matrix uniformly and that the phase morphology of the PA6/ABS‐g‐MA blends did not change with the addition of the epoxy resin. Transmission electron microscopy showed that the epoxy resin did not change the deformation mechanisms of the PA6/ABS‐g‐MA blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra‐functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E‐MA‐GMA and the effect of the epoxy monomer were investigated. It was found that E‐MA‐GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E‐MA‐GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E‐MA‐GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact‐fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.‐% or more elastomer.

SEM micrographs of freeze‐fractured surfaces of PBT/E‐MA‐GMA blend illustrating the finer dispersion of E‐MA‐GMA in the presence of epoxy monomer.  相似文献   


20.
Poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) (PEO) blends containing 1.0 wt% epoxy and from 0 to 30 wt% PEO were obtained by extrusion and injection molding. The blends were composed of two pure amorphous phases. The observed torque increases showed that epoxy reacted with PBT, leading to a fine and homogeneous morphology up to 15 wt% PEO content, which appeared larger and more heterogeneous at higher PEO contents. Toughness values fifteen‐fold those of pure PBT were obtained with only 13 wt% PEO. The tensile properties, including ductility, decreased with increasing PEO content, indicating that the adhesion level necessary for high ductility is higher than that necessary for super‐toughness. The inter‐particle distance (τ) was the main parameter that controlled toughness. The comparison of the results of this work with those of the same PBT/PEO blends with two different compatibilizers provides additional strong evidence of the adhesion at the interphase as the main parameter that controls the critical τ in these modified thermoplastic/rubber blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号