首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl/HCO3 exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl/HCO3 exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl/HCO3 exchangers, were unaltered. Thus, inhibition of villus cell Cl/HCO3 exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.  相似文献   

2.
Increasing evidence implicates endothelial dysfunction in the pathogenesis of Alzheimer’s disease (AD). Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is essential in maintaining cerebrovascular function and can modulate the production and clearance of amyloid beta (Aβ). APPswe/PSdE1 (APP/PS1) mice display age-related Aβ accumulation and memory deficits. In order to make the model more clinically relevant with an element of endothelial dysfunction, we generated APP/PS1/eNOS+/− mice by crossing complete eNOS deficient (eNOS−/−) mice and APP/PS1 mice. APP/PS1/eNOS+/− mice at 8 months of age displayed a more severe spatial working memory deficit relative to age-matched APP/PS1 mice. Moreover, immunohistochemistry and immunoblotting revealed significantly increased Aβ plaque load in the brains of APP/PS1/eNOS+/− mice, concomitant with upregulated BACE-1 (hence increased Aβ production), downregulated insulin-degrading enzyme (hence reduced Aβ clearance) and increased immunoreactivity and expression of microglia. The present study, for the first time, demonstrated that partial eNOS deficiency exacerbated behavioral dysfunction, Aβ brain deposition, and microglial pathology in APP/PS1 mice, further implicating endothelial dysfunction in the pathogenesis of AD. The present findings also provide the scientific basis for developing preventive and/or therapeutic strategies by targeting endothelial dysfunction.  相似文献   

3.
4.
This study investigates whether reduced optic atrophy 1 (Opa1) level promotes apoptosis and retinal vascular lesions associated with diabetic retinopathy (DR). Four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Opa1+/− mice, and diabetic Opa1+/− mice were used in this study. 16 weeks after diabetes onset, retinas were assessed for Opa1 and Bax levels by Western blot analysis, and retinal networks were examined for acellular capillaries (AC) and pericyte loss (PL). Apoptotic cells were detected in retinal capillaries using TUNEL assay, and caspase-3 activity was assessed using fluorometric analysis. Opa1 expression was significantly downregulated in retinas of diabetic and Opa1+/− mice compared with those of WT mice. Inducing diabetes further decreased Opa1 expression in retinas of Opa1+/− mice. Increased cytochrome c release concomitant with increased level of pro-apoptotic Bax and elevated caspase-3 activity were observed in retinas of diabetic and Opa1+/− mice; the number of TUNEL-positive cells and AC/PL was also significantly increased. An additional decrease in the Opa1 level in retinas of diabetic Opa1+/− mice exacerbated the development of apoptotic cells and AC/PL compared with those of diabetic mice. Diabetes-induced Opa1 downregulation contributes, at least in part, to the development of retinal vascular lesions characteristic of DR.  相似文献   

5.
Risk of cardiovascular disease (CVD) increases considerably as renal function declines in chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD and CKD. Following activation, NOD1 undergoes a conformational change that allows the activation of the receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an inflammatory response. We evaluated whether the genetic deficiency of Nod1 or Rip2 in mice could prevent cardiac Ca2+ mishandling induced by sixth nephrectomy (Nx), a model of CKD. We examined intracellular Ca2+ dynamics in cardiomyocytes from Wild-type (Wt), Nod1−/− and Rip2−/− sham-operated or nephrectomized mice. Compared with Wt cardiomyocytes, Wt-Nx cells showed an impairment in the properties and kinetics of the intracellular Ca2+ transients, a reduction in both cell shortening and sarcoplasmic reticulum Ca2+ load, together with an increase in diastolic Ca2+ leak. Cardiomyocytes from Nod1−/−-Nx and Rip2−/−-Nx mice showed a significant amelioration in Ca2+ mishandling without modifying the kidney impairment induced by Nx. In conclusion, Nod1 and Rip2 deficiency prevents the intracellular Ca2+ mishandling induced by experimental CKD, unveiling new innate immune targets for the development of innovative therapeutic strategies to reduce cardiac complications in patients with CKD.  相似文献   

6.
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl-sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl, K+, Na+) and synaptic stimulation of Shaffer’s collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl and pH.  相似文献   

7.
8.
Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, Opn4−/− × Pde6brd10/rd10 (O×Rd) double mutant murine, is a combination of a mutation in the Pde6b gene (photoreceptor degeneration) together with a deletion of the Opn4 gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells). This model has been characterized and compared with those of WT mice and murine animal models displaying both mutations separately. A total loss of pupillary reflex was observed. Likewise, behavioral tests demonstrated loss of rejection to illuminated spaces and a complete decrease in visual acuity (optomotor test). Functional recordings showed an absolute disappearance of various wave components of the full-field and pattern electroretinogram (fERG, pERG). Likewise, visual evoked potential (VEP) could not be recorded. Immunohistochemical staining showed marked degeneration of the outer retinal layers and the absence of melanopsin staining. The combination of both mutations has generated an animal model that does not show any photosensitive element in its retina. This model is a potential tool for the study of new ophthalmological approaches such as optosensitive agents.  相似文献   

9.
Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10−/− mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.  相似文献   

10.
Metalloendopeptidase ADAM-Like Decysin 1 (ADAMDEC1) is an anti-inflammatory peptidase that is almost exclusively expressed in the gastrointestinal (GI) tract. We have recently found abundant and selective expression of Adamdec1 in colonic mucosal PDGFRα+ cells. However, the cellular origin for this gene expression is controversial as it is also known to be expressed in intestinal macrophages. We found that Adamdec1 mRNAs were selectively expressed in colonic mucosal subepithelial PDGFRα+ cells. ADAMDEC1 protein was mainly released from PDGFRα+ cells and accumulated in the mucosal layer lamina propria space near the epithelial basement membrane. PDGFRα+ cells significantly overexpressed Adamdec1 mRNAs and protein in DSS-induced colitis mice. Adamdec1 was predominantly expressed in CD45 PDGFRα+ cells in DSS-induced colitis mice, with only minimal expression in CD45+ CD64+ macrophages. Additionally, overexpression of both ADAMDEC1 mRNA and protein was consistently observed in PDGFRα+ cells, but not in CD64+ macrophages found in human colonic mucosal tissue affected by Crohn’s disease. In summary, PDGFRα+ cells selectively express ADAMDEC1, which is localized to the colon mucosa layer. ADAMDEC1 expression significantly increases in DSS-induced colitis affected mice and Crohn’s disease affected human tissue, suggesting that this gene can serve as a diagnostic and/or therapeutic target for intestinal inflammation and Crohn’s disease.  相似文献   

11.
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia.  相似文献   

12.
The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/− mouse model (hereinafter referred to as ptch+/−), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/−cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/− mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/− mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/− mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.  相似文献   

13.
Mice lacking functional thyroid follicular cells, Pax8−/− mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na+-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, Pax8−/− mice should show deficits in the expression of Na+ currents and potentially also in the expression of Na+/K+-ATPases, which are necessary to maintain low intracellular Na+ levels. We thus compared Na+ current densities in postnatal mice using the patch-clamp technique in the whole-cell configuration as well as the expression of three alpha and two beta-subunits of the Na+/K+-ATPase in wild type versus Pax8−/− mice. Whereas the Na+ current density in hippocampal neurons from wild type mice was upregulated within the first postnatal week, the Na+ current density remained at a very low level in hippocampal neurons from Pax8−/− mice. Pax8−/− mice also showed significantly decreased protein expression levels of the catalytic α1 and α3 subunits of the Na+/K+-ATPase as well as decreased levels of the β2 isoform, with no changes in the α2 and β1 subunits.  相似文献   

14.
Approximately 50–80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/−) reduced the Bmal1 protein levels by ~50–75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/− mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.  相似文献   

15.
The effect of a cellular prion protein (PrPc) deficiency on neuroenergetics was primarily analyzed via surveying the expression of genes specifically involved in lactate/pyruvate metabolism, such as monocarboxylate transporters (MCT1, MCT2, MCT4). The aim of the present study was to elucidate a potential involvement of PrPc in the regulation of energy metabolism in different brain regions. By using quantitative real-time polymerase chain reaction (qRT-PCR), we observed a marked reduction in MCT1 mRNA expression in the cortex of symptomatic Zürich I Prnp−/− mice, as compared to their wild-type (WT) counterparts. MCT1 downregulation in the cortex was accompanied with significantly decreased expression of the MCT1 functional interplayer, the Na+/K+ ATPase α2 subunit. Conversely, the MCT1 mRNA level was significantly raised in the cerebellum of Prnp−/− vs. WT control group, without a substantial change in the Na+/K+ ATPase α2 subunit expression. To validate the observed mRNA findings, we confirmed the observed change in MCT1 mRNA expression level in the cortex at the protein level. MCT4, highly expressed in tissues that rely on glycolysis as an energy source, exhibited a significant reduction in the hippocampus of Prnp−/− vs. WT mice. The present study demonstrates that a lack of PrPc leads to altered MCT1 and MCT4 mRNA/protein expression in different brain regions of Prnp−/− vs. WT mice. Our findings provide evidence that PrPc might affect the monocarboxylate intercellular transport, which needs to be confirmed in further studies.  相似文献   

16.
Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFβ/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/− mice, a model for HHT1. Eng+/− mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFβ-induced differentiation of Eng+/− monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/− mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/− mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/− mice.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is a common inherited disorder caused by mutations of the NF1 gene that encodes the Ras-GTPase activating protein neurofibromin, leading to overactivation of Ras-dependent signaling pathways such as the mTOR pathway. It is often characterized by a broad range of cognitive symptoms that are currently untreated. The serotonin 5-HT6 receptor is a potentially relevant target in view of its ability to associate with neurofibromin and to engage the mTOR pathway to compromise cognition in several cognitive impairment paradigms. Here, we show that constitutively active 5-HT6 receptors contribute to increased mTOR activity in the brain of Nf1+/− mice, a preclinical model recapitulating some behavioral alterations of NF1. Correspondingly, peripheral administration of SB258585, a 5-HT6 receptor inverse agonist, or rapamycin, abolished deficits in long-term social and associative memories in Nf1+/− mice, whereas administration of CPPQ, a neutral antagonist, did not produce cognitive improvement. These results show a key influence of mTOR activation by constitutively active 5-HT6 receptors in NF1 cognitive symptoms. They provide a proof of concept that 5-HT6 receptor inverse agonists already in clinical development as symptomatic treatments to reduce cognitive decline in dementia and psychoses, might be repurposed as therapies alleviating cognitive deficits in NF1 patients.  相似文献   

18.
Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.  相似文献   

19.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in aging populations. Recently, the regulation of neurolipid-mediated signaling and cerebral lipid species was shown in AD patients. The triple transgenic mouse model (3xTg-AD), harboring βAPPSwe, PS1M146V, and tauP301L transgenes, mimics many critical aspects of AD neuropathology and progressively develops neuropathological markers. Thus, in the present study, 3xTg-AD mice have been used to test the involvement of the neurolipid-based signaling by endocannabinoids (eCB), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) in relation to the lipid deregulation. [35S]GTPγS autoradiography was used in the presence of specific agonists WIN55,212-2, LPA and CYM5442, to measure the activity mediated by CB1, LPA1, and S1P1 Gi/0 coupled receptors, respectively. Consecutive slides were used to analyze the relative intensities of multiple lipid species by MALDI Mass spectrometry imaging (MSI) with microscopic anatomical resolution. The quantitative analysis of the astrocyte population was performed by immunohistochemistry. CB1 receptor activity was decreased in the amygdala and motor cortex of 3xTg-AD mice, but LPA1 activity was increased in the corpus callosum, motor cortex, hippocampal CA1 area, and striatum. Conversely, S1P1 activity was reduced in hippocampal areas. Moreover, the observed modifications on PC, PA, SM, and PI intensities in different brain areas depend on their fatty acid composition, including decrease of polyunsaturated fatty acid (PUFA) phospholipids and increase of species containing saturated fatty acids (SFA). The regulation of some lipid species in specific brain regions together with the modulation of the eCB, LPA, and S1P signaling in 3xTg-AD mice indicate a neuroprotective adaptation to improve neurotransmission, relieve the myelination dysfunction, and to attenuate astrocyte-mediated neuroinflammation. These results could contribute to identify new therapeutic strategies based on the regulation of the lipid signaling in familial AD patients.  相似文献   

20.
Multidrug resistance-associated protein 1 (MRP1, encoded by the ABCC1 gene) may contribute to the clearance of amyloid-beta (Aβ) peptides from the brain into the blood and stimulation of MRP1 transport activity may be a therapeutic approach to enhance brain Aβ clearance. In this study, we assessed the effect of thiethylperazine, an antiemetic drug which was shown to stimulate MRP1 activity in vitro and to decrease Aβ load in a rapid β-amyloidosis mouse model (APP/PS1-21), on MRP1 transport activity by means of positron emission tomography (PET) imaging with the MRP1 tracer 6-bromo-7-[11C]methylpurine. Groups of wild-type, APP/PS1-21 and Abcc1(−/−) mice underwent PET scans before and after a 5-day oral treatment period with thiethylperazine (15 mg/kg, once daily). The elimination rate constant of radioactivity (kelim) was calculated from time–activity curves in the brain and the lungs as a measure of tissue MRP1 activity. Treatment with thiethylperazine had no significant effect on MRP1 activity in the brain and the lungs of wild-type and APP/PS1-21 mice. This may either be related to a lack of an MRP1-stimulating effect of thiethylperazine in vivo or to other factors, such as substrate-dependent MRP1 stimulation, insufficient target tissue exposure to thiethylperazine or limited sensitivity of the PET tracer to measure MRP1 stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号