首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitiligo is a common chronic dermatological abnormality that afflicts tens of millions of people. Furocoumarins isolated from Uygur traditional medicinal material Psoralen corylifolia L. have been proven to be highly effective for the treatment of vitiligo. Although many furocoumarin derivatives with anti-vitiligo activity have been synthesized, their targets with respect to the disease are still ambiguous. Fortunately, the JAKs were identified as potential targets for the disease and its inhibitors have been proved to be effective in the treatment of vitiligo in many clinical trials. Thus, sixty-five benzene sulfonate and benzoate derivatives of furocoumarins (7a–7ad, 8a–8ag) with superior anti-vitiligo activity targeting JAKs were designed and synthesized based on preliminary research. The SAR was characterized after the anti-vitiligo-activity evaluation in B16 cells. Twenty-two derivatives showed more potent effects on melanin synthesis in B16 cells than the positive control (8-MOP). Among them, compounds 7y and 8 not only could increase melanin content, but they also improved the catecholase activity of tyrosinase in a concentration-dependent manner. The docking studies indicated that they were able to interact with amino acid residues in JAK1 and JAK2 via hydrogen bonds. Furthermore, candidate 8 showed a moderate inhibition of CXCL−10, which plays an important role in JAK–STAT signaling. The RT-PCR and Western blotting analyses illustrated that compounds 7y and 8 promoted melanogenesis by activating the p38 MAPK and Akt/GSK-3β/β-catenin pathways, as well as increasing the expressions of the MITF and tyrosinase-family genes. Finally, furocoumarin derivative 8 was recognized as a promising candidate for the fight against the disease and worthy of further research in vivo.  相似文献   

2.
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.  相似文献   

3.
β-pinene is a monoterpene isolated from turpentine oil and numerous other plants’ essential oils, which has a broad spectrum of biological activities. In the current work, six novel β-pinene quaternary ammonium (β-PQA) salts were synthesized and evaluated in vitro for their antifungal, antibacterial and anticancer activities. The in vitro assay results revealed that compounds 4a and 4b presented remarkable antimicrobial activity against the tested fungi and bacteria. In particular, compound 4a showed excellent activities against F. oxysporum f.sp. niveum, P. nicotianae var.nicotianae, R. solani, D. pinea and Fusicoccumaesculi, with EC50 values of 4.50, 10.92, 9.45, 10.82 and 6.34 μg/mL, respectively. Moreover, compound 4a showed the best antibacterial action against E. coli, P. aeruginosa, S. aureus and B. subtilis, with MIC at 2.5, 0.625, 1.25 and 1.25 μg/mL, respectively. The anticancer activity results demonstrated that compounds 4a, 4b, 4c and 4f exhibited remarkable activity against HCT-116 and MCF-7 cell lines, with IC50 values ranged from 1.10 to 25.54 μM. Notably, the compound 4c displayed the strongest cytotoxicity against HCT-116 and MCF-7 cell lines, with the IC50 values of 1.10 and 2.46 μM, respectively. Furthermore, preliminary antimicrobial mechanistic studies revealed that compound 4a might cause mycelium abnormalities of microbial, cell membrane permeability changes and inhibition of the activity of ATP. Altogether, these findings open interesting perspectives to the application of β-PQA salts as a novel leading structure for the development of effective antimicrobial and anticancer agents.  相似文献   

4.
With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry.  相似文献   

5.
A common mechanism in which glucocorticoids participate is suggested in the pathogenesis of such metabolic diseases as obesity, metabolic syndrome, or Cushing’s syndrome. The enzyme involved in the control of the availability of cortisol, the active form of the glucocorticoid for the glucocorticoid receptor, is 11β-HSD1. Inhibition of 11β-HSD1 activity may bring beneficial results for the alleviation of the course of metabolic diseases such as metabolic syndrome, Cushing’s syndrome or type 2 diabetes. In this work, we obtained 10 novel 2-(adamantan-1-ylamino)thiazol-4(5H)-one derivatives containing different substituents at C-5 of thiazole ring and tested their activity towards inhibition of two 11β-HSD isoforms. For most of them, over 50% inhibition of 11β-HSD1 and less than 45% inhibition of 11β-HSD2 activity at the concentration of 10 µM was observed. The binding energies found during docking simulations for 11β-HSD1 correctly reproduced the experimental IC50 values for analyzed compounds. The most active compound 2-(adamantan-1-ylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one (3i) inhibits the activity of isoform 1 by 82.82%. This value is comparable to the known inhibitor-carbenoxolone. The IC50 value is twice the value determined by us for carbenoxolone, however inhibition of the enzyme isoform 2 to a lesser extent makes it an excellent material for further tests.  相似文献   

6.
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.  相似文献   

7.
Eugenol, 4-allyl-2-methoxyphenol, is the main constituent of clove essential oil and has demonstrated relevant biological activity, namely anticancer activity. Aiming to increase this activity, we synthesized a series of eugenol β-amino alcohol and β-alkoxy alcohol derivatives, which were then tested against two human cancer cell lines, namely gastric adenocarcinoma cells (AGS) and lung adenocarcinoma cells (A549). An initial screening was performed to identify the most cytotoxic compounds. The results demonstrated that three β-amino alcohol derivatives had anticancer activity that justified subsequent studies, having been shown to trigger apoptosis. Importantly, the most potent molecules displayed no appreciable toxicity towards human noncancer cells. Structure-activity relationships show that changes in eugenol structure led to enhanced cytotoxic activity and can contribute to the future design of more potent and selective drugs.  相似文献   

8.
Targeting matrix metalloproteinases (MMPs) is a pursued strategy for treating several pathological conditions, such as multiple sclerosis and cancer. Herein, a series of novel tetrahydro‐β‐carboline derivatives with outstanding inhibitory activity toward MMPs are present. In particular, compounds 9 f , 9 g , 9 h and 9 i show sub‐nanomolar IC50 values. Interestingly, compounds 9 g and 9 i also provide remarkable selectivity toward gelatinases; IC50=0.15 nm for both toward MMP‐2 and IC50=0.63 and 0.58 nm , respectively, toward MMP‐9. Molecular docking simulations, performed by employing quantum mechanics based partial charges, shed light on the rationale behind binding involving specific interactions with key residues of S1′ and S3′ domains. Taken together, these studies indicate that tetrahydro‐β‐carboline represents a promising scaffold for the design of novel inhibitors able to target MMPs and selectively bias gelatinases, over the desirable range of the pharmacokinetics spectrum.  相似文献   

9.
Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the β-carboline ring and ferrocene, as well as its position on the β-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.  相似文献   

10.
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.  相似文献   

11.
Amyloid β1–42 (Aβ(1–42)) oligomers have been linked to the pathogenesis of Alzheimer’s disease (AD). Intracellular calcium (Ca2+) homeostasis dysregulation with subsequent alterations of neuronal excitability has been proposed to mediate Aβ neurotoxicity in AD. The Ca2+ binding proteins calmodulin (CaM) and calbindin-D28k, whose expression levels are lowered in human AD brains, have relevant roles in neuronal survival and activity. In previous works, we have shown that CaM has a high affinity for Aβ(1–42) oligomers and extensively binds internalized Aβ(1–42) in neurons. In this work, we have designed a hydrophobic peptide of 10 amino acid residues: VFAFAMAFML (amidated-C-terminus amino acid) mimicking the interacting domain of CaM with Aβ (1–42), using a combined strategy based on the experimental results obtained for Aβ(1–42) binding to CaM and in silico docking analysis. The increase in the fluorescence intensity of Aβ(1–42) HiLyteTM-Fluor555 has been used to monitor the kinetics of complex formation with CaM and with calbindin-D28k. The complexation between nanomolar concentrations of Aβ(1–42) and calbindin-D28k is also a novel finding reported in this work. We found that the synthetic peptide VFAFAMAFML (amidated-C-terminus amino acid) is a potent inhibitor of the formation of Aβ(1–42):CaM and of Aβ(1–42):calbindin-D28k complexes.  相似文献   

12.
Acrylate and methacrylate monomers with the photodimerizable α,β-unsaturated ketone moiety, such as 4-cinnamoylphenyl, 4-(4-methoxycinnamoyl)phenyl, 4-(4-nitrocinnamoyl)phenyl, or 4-(4-chlorocinnamoyl)phenyl, were prepared and homopolymerized using benzoyl peroxide as the initiator at 70°C in methyl ethyl ketone. The poly(meth)acrylates were characterized by ultraviolet, infrared, 1H-nuclear magnetic resonance (NMR), and 13C-NMR spectra, and gel permeation chromatography. Their thermal properties were studied by thermogravimetric analyses in air and nitrogen, and differential scanning calorimetry. The photocrosslinking properties of the polymers were investigated as thin films and in solution in the presence and absence of sensitizer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2111–2120, 1998  相似文献   

13.
In a continuing search for curcuminoid (CUR) compounds with antitumor activity, a novel series of heterocyclic CUR–BF2 adducts and CUR compounds based on indole, benzothiophene, and benzofuran along with their aryl pyrazoles were synthesized. Computational docking studies were performed to compare binding efficiency to target proteins involved in specific cancers, namely HER2, proteasome, VEGFR, BRAF, and Bcl‐2, versus known inhibitor drugs. The majority presented very good binding affinities, similar to, and even more favorable than those of known inhibitors. The indole‐based CUR–BF2 and CUR compounds and their bis‐thiocyanato derivatives exhibited high anti‐proliferative and apoptotic activity by in vitro bioassays against a panel of 60 cancer cell lines, more specifically against multiple myeloma (MM) cell lines (KMS11, MM1.S, and RPMI‐8226) with significantly lower IC50 values versus healthy PBMC cells; they also exhibited higher anti‐proliferative activity in human colorectal cancer cells (HCT116, HT29, DLD‐1, RKO, SW837, and Caco2) than the parent curcumin, while showing notably lower cytotoxicity in normal colon cells (CCD112CoN and CCD841CoN).  相似文献   

14.
Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting β-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.  相似文献   

15.
Cyclin-dependent kinases (CDKs) play an important role in the cell-division cycle. Synthetic inhibitors of CDKs are based on 2,6,9-trisubstituted purines and are developed as potential anticancer drugs; however, they have low solubility in water. In this study, we proved that the pharmaco-chemical properties of purine-based inhibitors can be improved by appropriate substitution with the adamantane moiety. We prepared ten new purine derivatives with adamantane skeletons that were linked at position 6 using phenylene spacers of variable geometry and polarity. We demonstrated that the adamantane skeleton does not compromise the biological activity, and some of the new purines displayed even higher inhibition activity towards CDK2/cyclin E than the parental compounds. These findings were supported by a docking study, which showed an adamantane scaffold inside the binding pocket participating in the complex stabilisation with non-polar interactions. In addition, we demonstrated that β-cyclodextrin (CD) increases the drug’s solubility in water, although this is at the cost of reducing the biochemical and cellular effect. Most likely, the drug concentration, which is necessary for target engagement, was decreased by competitive drug binding within the complex with β-CD.  相似文献   

16.
TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker.  相似文献   

17.
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3′β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3′β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3′β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3′β-disteryl ethers were prepared. Eighteen various oxidized 3β,3′β-disteryl ethers (derivatives of 3β,3′β-dicholesteryl ether, 3β,3′β-disitosteryl ether and 3β,3′β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated.  相似文献   

18.
β-Secretase (BACE-1) constitutes an important target for search of anti-Alzheimer’s drugs. The first inhibitors of this enzyme were peptidic compounds with high molecular weight and low bioavailability. Therefore, the search for new efficient non-peptidic inhibitors has been undertaken by many scientific groups. We started our work from the development of in silico methodology for the design of novel BACE-1 ligands. It was validated on the basis of crystal structures of complexes with inhibitors, redocking, cross-docking and training/test sets of reference ligands. The presented procedure of assessment of the novel compounds as β-secretase inhibitors could be widely used in the design process.  相似文献   

19.
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d–g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.  相似文献   

20.
The interaction between sertraline hydrochloride (SRT) and randomly methylated β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pressure. The method used—Isothermal Titration Calorimetry (ITC) enabled to determine values of the thermodynamic functions like the enthalpy (ΔH), the entropy (ΔS) and the Gibbs free energy (ΔG) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n) and binding/association constant (K) value have been calculated from the experimental results. The obtained outcome was compared with the data from the literature for other non-ionic βCD derivatives interacting with SRT and the enthalpy-entropy compensation were observed and interpreted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the computational studies with the use of molecular docking (MD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号