首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
灰煤混合燃料的燃烧动力学特性研究   总被引:1,自引:0,他引:1  
利用TGA/SDTA851e型热重分析仪,对煤及不同灰煤比的混合燃料进行了热失重实验,获得了其热失重特性曲线。采用单个扫描速率的Coats-Redfern法、多重扫描速率的FWO(Flynn-Wall-Ozawa)法和Starink法三种典型的热分析方法求取了各样品的动力学参数。结果表明:随着灰煤比的升高,样品燃烧反应平均过程的活化能增高;灰煤比由0升高到0.15时,样品的活化能、着火温度和燃烬温度变化较大;灰煤比从0.15升高到0.45时,活化能、着火温度和燃烬温度变化较小。同时,通过对比几种分析方法的计算结果,认为采用多重升温速率法求取活化能时要谨慎,建议采用单重升温速率法和多重升温速率法相结合来分析燃料的热解及燃烧机理。  相似文献   

2.
为解决生物质与煤混燃存在的结渣积灰问题.以稻秸秆、白杨木屑、稻壳和煤在不同配比下混合燃烧的灰分作为研究对象,利用HR-3C灰熔融性测定仪研究了生物质与煤混合燃烧的熔融特性.研究表明:生物质燃料中碱金属含量比煤中的含量要高,提高生物质的掺入比总体上会使灰熔融温度降低;此外,对于二氧化硅含量不同的生物质燃料其灰熔融性有所差...  相似文献   

3.
文章利用扫描电子显微镜(SEM)、X射线荧光光谱仪(XRF)、X射线荧光衍射仪(XRD)、灰熔融特性分析仪对4种生物质(海草、梨木、榛子壳、稻秆)灰与神木烟煤灰的混合灰的熔融特性进行了研究。研究发现:水生生物质(海草)灰的掺混使混合灰的熔融特性温度先升高再降低;两种木本生物质(梨木和榛子壳)灰的掺混使混合灰的熔融特性温度逐渐升高;草本生物质(稻秆)灰的掺混对混合灰熔融特性温度的影响与水生生物质灰类似。由XRF分析可知:Na2O和CaO对于混合灰的熔融特性温度有更明显的影响,随着混合灰中Na2O含量的逐渐增加,混合灰的熔融特性温度逐渐下降;随着混合灰中CaO含量的逐渐增加,混合灰的熔融特性温度逐渐上升。由XRD结果可知:水生生物质灰在高温下容易形成熔点较低的碱金属硅酸盐,使混合灰的熔点降低;木本生物质灰中的CaCO3含量较高,能够提高混合灰的熔点;草本生物质灰与水生生物质灰类似,含有的低熔点碱金属硅铝酸盐使混合灰的熔点降低。  相似文献   

4.
通过对生物质燃料(锯末、玉米秸和麦秸)与煤混燃灰化学成分和熔融温度的测定,利用灰分的碱酸比B/A、硅比G、硅铝比S/A、积灰沾污特性指数Hw、磨损特性指数日。等判别指数对生物质纯燃、与煤混燃时的结渣、积灰和磨损特性进行了研究和分析。结果表明,生物质灰都具有结渣倾向,麦秸灰具有严重的积灰倾向,玉米秸灰和锯末灰有易积灰倾向。生物质灰的磨损倾向都较轻微。随着生物质与煤混燃比例的增加,结渣有加重趋势。灰中酸性氧化物和碱性氧化物的含量会直接影响灰的熔融温度。  相似文献   

5.
针对煤燃烧过程中复杂气氛下灰熔融特性,开发了气氛可控的灰熔融特性测试平台,研究了反应气氛对两种不同Fe含量的煤样灰熔融特性的影响;在不同气氛的高温(1,100,℃)条件下制取灰样,并采用XRD(X射线衍射)分析,获得不同气氛下矿物演变的规律.结果表明,在空气中O_2转化为CO_2的过程中,灰熔点基本不变;在N_2、CO和CO_2体积分数分别为80%,、5%,和15%,的弱还原性气氛时,灰熔点大幅度降低,高铁煤降低更为明显;当气氛的还原性继续增强,灰熔点反而上升.在弱还原性气氛下含Fe矿物被还原,形成了低熔点Fe~(2+)化合物,是弱还原性气氛下灰熔点降低的主要原因,而在强还原性气氛下Fe~(2+)化合物继续被还原为Fe单质,使灰熔点上升.  相似文献   

6.
为实现新疆棉杆的生物质能合理利用,以新疆乌苏市皇宫镇的棉杆为典型样本,进行生物质燃烧特性研究。对棉杆样品进行了工业分析和热重分析,对其燃烧产物-灰样进行熔融烧结实验和汞含量分析。利用X射线荧光光谱仪对完全燃烧温度分别为400、600、800℃的灰样的微量元素成分进行分析,并对灰样中重金属汞含量进行测定。研究发现:棉杆的燃烧过程经历了2个失重峰值,当燃烧温度到达800℃时,棉杆的失重率几乎为零;灰样中K元素含量随温度升高而减少;Cl元素含量在燃烧温度为400和600℃时基本一致,当燃烧温度升高到800℃时,Cl几乎全部析出,灰样中的其它元素含量基本没有变化。400℃灰样中金属元素主要以碳酸盐、硅酸盐和氯化物的形式存在;600℃时灰样中形成的化合物较为复杂;800℃灰样中金属元素主要以氧化物的形式存在。棉杆中的汞含量远低于现有电站的燃煤含量,其燃烧的固体产物灰中的汞含量也比煤灰少。  相似文献   

7.
采用高温微量热天平对造气炉渣与无烟煤混合燃料进行了燃烧试验。得到造气炉渣与无烟煤不同混合比的TG、DTG曲线,分析了不同混合比对造气炉渣与无烟煤混合燃烧的影响,得到造气炉渣与无烟煤混合燃烧的着火温度、燃烧特性指数。结果表明:造气炉渣和无烟煤混合燃烧特性指数随着渣煤比的增大,燃烧特性指数先减小、再增大、再减小。当渣煤比为4∶6时,燃烧特性指数最大,渣煤比为5∶5时,燃烧特性指数仅次于渣煤比为4∶6的情况。渣煤不掺混时,燃烧特性指数很小;当掺混时,燃烧特性指数大得多。  相似文献   

8.
以棉杆和木屑为原料制备生物质炭化成型燃料(biomass carbonized forming fuel,BCFF).对成型燃料进行了热重分析,选择温度为550,℃、700,℃和850,℃的灰样进行X射线荧光光谱(X-ray fluorescence,XRF)、X射线衍射(X-ray diffraction,XRD)分析、灰熔融实验.TG实验表明:BCFF燃烧过程经历吸热失水、挥发分析出及燃烧、固定碳燃烧和燃尽4个阶段.XRF分析表明:随灰化温度从550,℃升高至815,℃,K减少了56.2%,,Na减少了26.5%,,Cl减少了75%,,而Ca增加了41.6%,,且在700~815,℃之间K、Na、Cl元素损失最大.XRD分析表明:BCFF燃烧灰样的成分主要是石英、单钾芒硝、钙沸石、索伦石、方镁石和硫酸盐等.温度从550,℃升至700,℃时,灰样中KCl消失和出现了钙沸石;升至815,℃时,索伦石消失,分解生成氧化钙、氧化硅、氧化铝等稳定的高温共融体.研究结果可为生物质锅炉燃料选择方面提供理论依据.  相似文献   

9.
生物质与煤混合燃烧成灰特性研究进展   总被引:3,自引:0,他引:3  
基于能源与环境的双重压力以及生物质与煤单独燃用存在的问题,生物质与煤混燃已成为一种发展趋势.生物质与煤混燃存在的结渣积灰等问题制约着混燃技术的推广利用,因此研究生物质与煤混合燃烧的成灰特性具有现实意义.文章详细介绍了生物质与煤混合燃烧成灰特性的影响因素和分析方法,认为温度是影响生物质与煤混合燃烧成灰特性的主要因素;生物质与煤的混合比例对灰渣成分有一定影响,但二者间不存在明显的线性关系.燃料中的碱金属、氯、硫是引起结渣积灰的主要物质.由于生物质与煤的成灰特性相近,只是灰渣成分的含量差异较大,因此可以利用已有的煤结渣特性研究成果,分析混燃的成灰特性,但须要考虑生物质灰分的特征.  相似文献   

10.
将神华准东煤(神华煤)和天池能源准东煤(天池煤)与碱沟煤按照不同质量掺混比进行混合并制得灰样,将NaCl、CaO、Al2O3和SiO2按不同添加比例加入神华煤和天池煤并制成灰样,对上述混合灰样的熔融特性进行研究.结果表明:碱沟煤掺混2种准东煤后,随着准东煤质量掺混比的增大,混合灰各个灰熔点特征温度先降低后升高;随着灰样中Na含量增加,准东煤灰样的变形温度显著降低,软化温度、半球温度和流动温度先降低后趋于不变;当灰样中Na含量达到一定比例后,NaCl对准东煤灰熔融特性的影响明显减弱;CaO对准东煤灰熔点的影响较复杂,可以降低也可以提高灰熔点;随着Al2O3添加比例的增加,准东煤灰熔点先升高后急剧降低;随着SiO2添加比例的增加,神华煤灰样的变形温度先升高后降低,而天池煤灰样的变形温度逐步升高,其他3个特征温度均逐渐降低.  相似文献   

11.
《能源学会志》2020,93(4):1373-1381
Ignition and burnout characteristics of semi-coke and bituminous coal blends were investigated by thermogravimetric analyzer and drop tube furnace. The results showed that the ignitability index and the comprehensive combustion characteristic index of the blends decrease as the blending proportion of semi-coke increases, but the average activation energy of the blends increases gradually. Ignition mode of bituminous coal is changed from homogeneous to hetero-homogeneous ignition with the increasing of semi-coke content in the blends. When the mixing proportion of semi-coke is lower than 45%, the burnout rate is lower than the weighted value in the early stage of combustion and gradually higher than the weighted value with the development of combustion process. However, the burnout is always lower than the weighted value to mix with 67% semi-coke. Increasing furnace temperature from 850 °C to 1050 °C can improve the mid-term reaction process, alleviate the negative effects of semi-coke on the co-combustion process and increase the burnout rate. So less than 45% semi-coke blending ratio and increasing furnace temperature are recommended for semi-coke and bituminous coal co-combustion.  相似文献   

12.
煤粉与生物质混燃的低温着火特性   总被引:1,自引:1,他引:0  
利用自制的管式炉恒温热重测量实验台研究了掺混比、温度、煤种以及生物质种类等因素对煤粉与生物质混燃时低温着火特性的影响,并对煤粉与生物质混燃时的低温着火活化能进行了计算.结果表明:随着掺混比的增大,混合物的燃烧速率加快且燃尽程度提高;温度升高能改善煤粉与生物质混合物的燃烧特性;掺混生物质对难燃煤的着火特性影响比对易燃煤更明显;对于某一煤种,掺混水分和挥发分含量高的生物质,燃烧初期的失重速率加快;掺混灰分含量越多的生物质,在燃烧后期对煤粉的促燃作用越差;燃烧反应活化能随着生物质掺混比和温度区间的增大而减小.  相似文献   

13.
The present study investigated the potential of using poor lignites from different seams in N. and S. Greece and biomass blends in energy production. The experiments were conducted in a thermogravimetric analysis system, over the temperature range 25–850°C. The efficiency of the process was evaluated in terms of combustion rate, burnout temperature, and time, as well as ignition and combustion indices. The thermochemical reactivity of lignites from N. Greece increased when biomass materials were added, while the fuels showed more or less an additive behavior upon blending. However, for lignites from S. Greece, co-combustion with biomass fuels showed synergy between component fuels.  相似文献   

14.
This study presents an investigation on the influence of hydrothermally treated municipal solid waste (MSW) on the co-combustion characteristics with different rank coals, i.e. Indian, Indonesian and Australian coals. MSW blends of 10%, 20%, 30% and 50% (wt.%) with different rank coals were tested in a thermogravimetric analyser (TGA) in the temperature range from ambient to 700 °C under the heating rate of 10 °C/min. Combustion characteristics such as volatile release, ignition and burnout were studied for the blend fuel. Different ignition behavior was observed depending on the blends composition and the coal rank. The result of this work indicates that the blending of MSW improves devolatization properties of coal. But it was found that the co-combustion characteristics of MSW and coal blend cannot be predicted only from the pyrolytic and or devolatization phenomena as the other factors such as the coal quality also plays a vital role in deciding the blends co-combustion characteristics. The TGA combustion profiles showed that the combustion characteristics of blends followed those of parent fuels in both an additive and non-additive manners. These experimental results help to understand and predict the behavior of coal and MSW blends in practical applications.  相似文献   

15.
Zhundong coal (ZDc) with a very large reserve is faced with severe problems of slagging and fouling during combustion in boilers because of the high-Na content. Sludge, the by-product of urban sewage treatment, is also faced with the problem in utilization. In this study, the co-combustion of ZDc and sludge was investigated in a laboratory-scale experimental apparatus before further studies in larger-scale setups. The experimental results confirm an interaction between ZDc and sludge during co-combustion, which was mainly caused by the Na catalytic action and improved the combustion performance of the co-fuels. The catalytic effect was particularly significant at low sludge mixing ratios. The reactions between Na-based compounds in ZDc and Si/Al/P-rich minerals in sludge, forming high-melting-point phosphates and aluminosilicates, not only increased Na retention in residual ash reducing the risk of fouling on tail-heating surfaces in boilers, but also raised the ash fusibility of the co-fuels avoiding low-temperature sintering. Even so, to prevent slagging, the high combustion temperature above 900 °C should be avoided during co-combustion because of the high Na retention in residual ash. Moreover, the high heavy metal retention in residual ash decreased the pollution caused by heavy metal volatilization during sludge combustion.  相似文献   

16.
[目的]燃煤与固体废弃物混合掺烧不仅可以实现固废的能量回收利用,也是实现燃煤发电的碳减排的路径之一。[方法]文章综述讨论了燃煤电站掺混固废的研究工作,主要介绍了基于目前主流的电站锅炉为反应器开展燃煤与不同固废掺混的燃烧应用与技术发展;从燃料经济性、混合燃料的飞灰特征、污染物排放以及碳税角度评价燃煤掺混固废的燃烧技术发展;最后讨论了直接掺混和间接掺混的技术的特点。[结果]燃煤直接掺混固废燃烧时需要尽可能减少对锅炉运行的影响,特别是气体污染物的排放以及飞灰对换热面的影响和飞灰无害化处置。间接掺混可以避免混合燃料燃烧对炉膛的影响,但是需要较高的硬件成本投资且耦合技术较为复杂。富氧燃烧技术依旧需要对现有锅炉结构优化来提高该技术的适用性。[结论]直接掺混可实现性与成本优于间接掺混,且循环流化床燃料适应广的特点有利于燃煤直接掺混固废燃烧技术的应用,随着基于循环流化床的富氧燃烧技术的发展将更有利于实现火电厂的碳减排。  相似文献   

17.
根据实测的喷油器针阀升程和示功图,开展了直喷式柴油机燃用F-T柴油与0号柴油混合燃料时燃烧特性的研究.试验用燃料为0号柴油、含25%和50%F-T柴油的混合燃料以及100%F-T柴油.结果表明,在相同工况下,随着混合燃料中F-T柴油比例的增加,喷油延迟角增大,而喷油持续期变化不大.滞燃期随着F-T柴油比例的增加而缩短,其中当F-T柴油的比例由0增至25%时,滞燃期缩短最为明显,此后进一步增加F-T柴油的比例,滞燃期缩短幅度减小.随着混合燃料中F-T柴油比例的增加,预混燃烧放热峰值降低,扩散燃烧放热峰值增大,燃烧持续期略有延长,缸内最高燃烧压力和气体最高平均温度降低,最大压力升高率显著下降,发动机的燃烧噪音和机械损失减小,有效燃油消耗率和有效热效率得到改善.  相似文献   

18.
The current situation in the energy sector suggests the possibility of using biomass in co-combustion systems as an alternative to other fuels. In the case of the North of Spain the amount of forest residues that is generated guarantees it as a valuable source of energy for the future. However, an effective exploitation of these residues must first overcome a number of serious problems such as transport, storage, handling and pre-treatment, to meet the requirements of the power plants. The aim of this work is to study the influence of storage time on the moisture content and chemical and combustibility properties of pine woodchips. Their combustibility behaviour was evaluated by means of the following tests: heating value, ash composition, slagging/fouling indices, and the combustion profiles obtained from TG analysis. As a result of the weather conditions in the North of Spain open-air storage in the area under study is not suitable for dry pine woodchips, although their combustion behaviour remains practically unaltered.  相似文献   

19.
The effects of hydrogen addition and turbulence intensity on the natural gas–air turbulent combustion were studied experimentally using a constant volume vessel. Turbulence was generated by injecting the high-pressure fuel into the vessel. Flame propagation images and combustion characteristics via pressure-derived parameters were analyzed at various hydrogen volumetric fractions (from 0% to 40%) and the overall equivalence ratios of 0.6, 0.8 and 1.0. The results showed that the turbulent combustion rate increased remarkably with the increase of hydrogen fraction in fuel blends when hydrogen fraction is over 11%. Combustion rate was increased remarkably with the introduction of turbulence in the bomb and decreased with the decrease of turbulence intensity. The lean flammability limit of natural gas–air turbulent combustion can be extended with increasing hydrogen fraction addition. Maximum pressure and maximum rate of pressure rise increased while combustion duration decreased monotonically with the increase of hydrogen fraction in fuel blends. The sensitivity of natural gas/hydrogen hybrid fuel to the variation of turbulence intensity was decreased while increasing the hydrogen addition. Maximum pressure and maximum rate of pressure rise increased while combustion duration decreased with the increase of turbulent intensity at stoichiometric and lean-burn conditions. However, slight influence on combustion characteristics was presented with variation of hydrogen fraction at the stoichiometric equivalence ratio with and without the turbulence in the bomb.  相似文献   

20.
This article reports an experimental study on the combustion characteristics and emissions of homogenous charge compression ignition (HCCI) combustion using n-heptane doped with methyl tert-butyl ether (MTBE). The experiments were conducted on a single cylinder HCCI engine using neat n-heptane and 10%, 20%, 30%, 40% and 50% (by volume) MTBE/n-heptane blends at constant engine speed. The experimental results reveal that the ignition timing of the low temperature reaction (LTR) gets retarded, the peak values of heat release during the LTR decrease and the negative temperature coefficient (NTC) duration gets prolonged with the increase of MTBE in the blends. Consequently, the ignition timing of the high temperature reaction (HTR) gets delayed and both the attainable maximum indicated mean effective pressure (IMEP) and the lowest stable IMEP increase. Parametric studies on CO and HC emissions reveal that the maximum combustion temperature, pressure rise rate, IMEP, ignition timing of the HTR, combustion duration and fuel components have important impacts on HC emission, while the main parameters that show an important influence on CO emissions are the maximum combustion temperature, pressure rise rate, IMEP and combustion duration. Moreover, in order to suppress the CO and HC emissions to a low level, the maximum combustion temperature should be higher than 1500 K, the maximum pressure rise rate larger than 0.5 MPa/°CA, the IMEP above 0.3 MPa and the combustion duration shorter than 9 °CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号