首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于反演设计的机械臂非奇异终端神经滑模控制   总被引:2,自引:0,他引:2  
针对具有建模误差和不确定干扰的多关节机械臂的轨迹跟踪问题,设计反演非奇异终端神经滑模控制。该方案是采用能有限时间收敛的非奇异终端滑模面,根据滑模控制原理和反演方法设计反演滑模控制器;对于反演滑模控制系统中由于建模误差和不确定干扰造成的不确定因素的上界,设计径向基(Radial basis function, RBF)神经网络自适应律,在线估计不确定因素的上界;利用李亚普诺夫定理证明了系统的稳定性。仿真结果表明,该方法具有良好的轨迹跟踪性能,提高对于建模误差和不确定干扰等因素的鲁棒性,削弱了抖动。  相似文献   

2.
针对微型飞行器的姿态角摄动引起的系统不确定性及外界干扰等问题,提出了基于区间二型模糊神经网络辨识的增益自适应模糊控制器.首先,给出了微型飞行器姿态动力学模型.然后,采用区间二型模糊神经网络对滑模控制器中由于姿态角摄动引起的系统不确定性进行在线辨识,通过增益自适应滑模控制器中的校正控制项对辨识误差及负载干扰进行补偿.最后,通过设计李亚普诺夫函数,得到闭环系统一致稳定条件下的区间二型模糊神经网络参数在线调整的自适应律及滑模增益自适应律.仿真对比表明,与传统的增益自适应滑模控制器和基于一型模糊神经网络辨识的滑模控制器及相比,本文提出的控制器不仅对系统的不确定性因素及外界干扰具有较强的鲁棒性,而且稳定误差小,跟踪精度高.  相似文献   

3.
为了提高全自动泊车系统的路径规划质量和跟踪精度,提出了微分平坦路径规划方法和非时间参考滑模的跟踪控制方法。分析了微分平坦系统原理,确定了车辆运动学模型的平坦输出,基于平坦输出量规划了泊车路径。分析了随时间单调递增的非时间参考量,建立了在非时间参考系下的路径跟踪误差模型;在非时间参考系下设计了滑模面和控制律,并证明了Lyapunov意义下的稳定性。经仿真验证可以看出,基于微分平坦原理可以规划出一条最优的泊车路径;同时使用PID控制器和非时间参考滑模控制器对泊车路径进行跟踪,PID控制器的最大纵向误差是滑模控制器的3.57倍,最大方位角误差是滑模控制器的1.67倍,证明了非时间滑模控制器对泊车路径具有更高的跟踪精度。  相似文献   

4.
针对机械臂轨迹跟踪控制中传统滑模控制需估计其建模误差及外界干扰等不确定性,当建模不确定性及外界干扰较大较复杂时,将会导致出现抖振现象。该文在以传统滑模控制为主控制器的基础上,通过对传统干扰观测器进行改进,对外界干扰进行反馈补偿,同时利用神经网络对其建模误差进行逼近。通过机械手仿真实验结果表明,所提方法能够有效抑制系统抖振现象,提高响应速度及其轨迹跟踪精度。  相似文献   

5.
为了解决具有外部干扰以及建模误差的多关节机械臂的轨迹跟踪问题,提出了一种机械臂反演非奇异终端的神经滑模控制方法。采用非奇异终端的滑模面,基于反演方法以及滑模控制的原理,设计了反演滑模控制器。针对由于外部干扰以及建模误差引起的反演滑模控制系统中不确定的因素上界,设计了径向基(radial basis function,简称RBF)神经网络的自适应律,对不确定因素上界进行了在线估计,并对控制系统的稳定性使用了Lyapunov定理进行证明。仿真分析结果表明,所提出的方法不仅可以减少系统中存在的抖振现象,而且具有较好的轨迹跟踪性能和较强的鲁棒性。  相似文献   

6.
由于自身结构上的特点,谐波传动系统存在柔性变形、摩擦和外界不确定干扰等非线性因素。传统控制器大多对系统进行了一定程度的简化,或未考虑非线性外界扰动,导致所设计的控制器性能达不到预期效果。为了提高系统精度,建立了考虑系统非线性刚度和非线性摩擦的谐波传动系统动力学模型;基于试验数据,采用最小二乘法对模型进行参数辨识;采用径向基函数(Radial Basis Function,RBF)神经网络在线逼近系统非线性摩擦和外界不确定干扰力矩,并提出了一种基于RBF神经网络的自适应反演控制器;利用Lyapunov稳定性理论,证明了其闭环系统的收敛性。仿真结果表明,与普通Back-stepping控制相比,在受到外界未知干扰后,所提出的RBF神经网络自适应反演控制能有效地逼近系统非线性摩擦和外界未知干扰,其跟踪误差峰-峰值能迅速稳定到0.000 82 rad;而Back-stepping控制对外界未知干扰比较敏感,其跟踪误差峰-峰值增大至0.012 3 rad左右。所提出的RBF神经网络自适应反演控制能抑制参数动态变化和外界干扰对系统传动精度的影响,提高系统的传动精度。  相似文献   

7.
为了满足蛇形机器人轨迹跟踪运动的精度需要,消除外界干扰对机器人跟踪误差的影响,提出了一种蛇形机器人跟踪 误差预测的自适应轨迹跟踪控制器。 所提出的控制器实现了机器人干扰变量、摩擦系数和控制参数的预测,并用预测值和虚拟 控制函数来补偿系统的控制输入,抵消了蛇形机器人在轨迹跟踪过程中的侧滑角,避免了干扰变量对机器人带来的负面影响, 提高了轨迹跟踪的误差稳定性与控制精度。 在建立蛇形机器人模型后,利用积分形式的侧滑角补偿项改进了视线法,并设计了 蛇形机器人的自适应轨迹跟踪控制器。 使机器人的位置误差在 10 s 内实现收敛,角度误差小于 0. 03 rad,预测值误差在 5 s 内 收敛。 通过仿真实验,验证了所提出的控制器的有效性和优越性。  相似文献   

8.
李敏 《现代制造工程》2023,(7):37-44+105
为了减小机械臂在环境扰动、参数漂移和建模误差等影响下的轨迹跟踪误差,设计了基于积分终端滑模和变论域模糊补偿的组合控制器。采用拉格朗日方程建立了机械臂系统的动力学模型,制定了不确定因素影响下机械臂跟踪控制方案;设计的积分终端滑模控制器可以将系统初始状态限制在滑模面上,消除了控制过程的抖振并提高了跟踪速度;提出了自适应论域策略,该策略可以提高补偿力矩的输出细粒度,并将变论域模糊算法用于不确定因素补偿。经实验验证,变论域模糊补偿控制对关节1角位置的最大跟踪误差为0.103 rad,误差绝对均值为0.025 rad,对关节2角位置的最大跟踪误差为0.073 rad,误差绝对均值为0.012 rad,跟踪控制精度高于模糊补偿控制、RBF-BP控制和自适应鲁棒控制,验证了变论域模糊补偿控制方法的有效性和先进性。  相似文献   

9.
针对四旋翼无人机在轨迹跟踪过程中会受到内外部扰动、模型误差等不确定性因素的影响,本文提出了一种基于改进型扩展状态观测器的积分滑模控制方案。具体来讲,首先,将四旋翼无人机系统存在的模型误差以及内外部扰动等不确定性因素视作集总干扰,通过借鉴的改进扩展状态观测器对其进行观测;进而,在此基础上,进一步考虑四旋翼无人机系统控制的连续性,基于四旋翼无人机轨迹误差、速度误差、姿态角误差和姿态角速度误差设计积分滑模控制器,分析了系统的稳定性并分别进行了数值仿真和实机实验。结果表明,采用本文算法时,在数值仿真中,各状态跟踪误差不超过1%,跟踪精度最高;在实机实验中,位置跟踪误差总体上能控制在20%以下。因此,本文方法具备有效性和可行性。  相似文献   

10.
为了提高机械臂对给定轨迹的跟踪精度且削弱滑模控制抖振问题,提出了基于RBF神经网络滑模控制的轨迹跟踪方法。建立了多连杆机械臂系统的运动学和动力学模型。首先忽略由建模误差和系统扰动产生的系统不确定项,建立了全局PID滑模控制器,设计了由等效控制律和切换控制律组成的全局滑模控制律;而后使用单隐含层RBF神经网络逼近系统不确定项,使用神经网络对不确定项的逼近值补偿建模误差和系统扰动,达到提高控制精度的目的。经仿真验证,在机械臂初始位置误差较大的情况下,神经网络滑模控制器的调节时间、超调量、驱动力矩抖振远小于全局PID滑模控制器,证明了神经网络滑模控制器在机械臂轨迹跟踪控制中的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号