首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为研究掺混O3对2CH4-2H2-5O2混合气火焰、由缓燃向爆震转捩(DDT)过程及爆轰波传播特性的影响,使用高速摄像机(CCD)观测了不同O3质量浓度(0.00%、0.44%、0.95%、1.40%、2.00%)下,2CH4-2H2-5O2混合气在不同内径的毫米级(3.00、5.00、7.00 mm)管道内的火焰传播情况,进而分析了掺混O3对2CH4-2H2-5O2DDT过程及爆轰波传播特性的影响。实验结果表明,添加臭氧可以显著加速火焰的传播速度,从而加快爆燃向爆轰(DDT)过程,缩短起爆距离。在相同管径下,随着混合臭氧质量浓度的增加,火焰的传播速度增加,起爆距离减小。而当添加的臭氧比率相同时,随着管道直径的减小,起爆距离缩短。  相似文献   

2.
通过两个球形容器与管道的连接组合,改变管道长度,进行连通容器预混气体爆炸实验.旨在获得连通容器的爆炸压力发展历史和连通管道内的火焰传播速率,进而分析管道长度、火焰传播方向、不同点火位置对连通容器爆炸压力和最大压力上升速率、火焰传播速率的影响.实验结果表明,随着连接管道长度的增加,传爆容器的爆炸压力和最大压力上升速率增加;当传爆容器为小容器时,增加更为明显,压力振荡更为剧烈;起爆容器的爆炸压力随管长的增加变化不大;火焰从起爆容器传播到传爆容器经历了一段不断加速、但加速度不断减小的过程;管径一定时,起爆容器越大,火焰进入管道的初速度越大,传爆容器越小,火焰传播受到的阻滞作用越强,火焰到达传爆容器的速度越小.  相似文献   

3.
甲醇发动机在压缩比过度提高后会出现烈性爆震,甚至造成对活塞的破坏.为了揭示这种烈性爆震现象,本研究进行了数值模拟计算,分析了末端混合气的化学反应过程,揭示了压力波导致自燃、自燃又反过来影响压力波的机理.研究结果表明,有两种方式导致了爆轰波的形成,第一种是爆燃转爆轰,该过程发生在正常火焰面上;第二种是直接起爆,该过程发生在自燃点上.早期形成的压力波在缸内振荡,促进了末端混合气的低温反应,为爆轰的形成积累了充足的自由基.  相似文献   

4.
针对爆轰波在浓度梯度作用下衍射、熄爆到再起爆过程,基于开源软件OpenFOAM研究了两种不同混合气在3种不同浓度梯度下流场特征.结果表明:随着浓度梯度增大,横向爆轰波强度会减弱,爆轰波更易解耦.前导激波与浓度梯度相互作用会使爆轰波面发生弯曲,并且改变横向爆轰波和马赫杆的传播过程.对于稳定气体(H2/O2/Ar),爆轰波...  相似文献   

5.
模拟了一台高压缩比发动机下超级爆震的燃烧过程,分析火焰传播转爆轰(DDT)过程中压力如何影响末端混合气自燃,以及发生爆轰后的自维持过程.结果表明:压力是火焰传播作用于自燃并引发爆轰的主要原因,在短时间内经历压力波两次压缩,这不同于活塞压缩的原因在于这种压缩具有方向性.此外,维持爆轰需要压力波前新自燃点能量释放加速压力波,存在能量释放速度较压力波速度减小和增大两种自燃点状态,整个过程表现为:自燃释放压力波传递引发自燃状态1,压力波缓慢增强引发自燃状态2,自燃状态1下能量释放速度相对压力波速度减小,自燃状态2下能量释放速度相对压力波速度增大.  相似文献   

6.
实验测量了爆震室内不同轴向位置的压力和离子信号的演变过程,并利用高速阴影系统直接观察了透明方形管道内汽油/空气两相混合物动态填充过程中,弱火花点火后火焰加速传播、火焰与障碍物的相互作用、激波的出现、热点形成、爆燃向爆震转变、爆震波在障碍物管道中和光滑管道中的传播过程,分析影响爆震波传播速度的关键因素,用烟膜板记录了起爆区的胞格结构.  相似文献   

7.
二维守恒元和求解元方法在两相爆轰流场计算中的应用   总被引:2,自引:0,他引:2  
应用二维守恒元和求解元方法数值模拟脉冲爆轰发动机内汽油/空气两相燃烧转爆轰的过程.分析了爆轰波从开始产生到形成稳定的全过程.研究了点火能量对燃烧转爆轰过程的影响:点火能量越小,DDT时间越长;若点火能量过小就不能形成DDT.同时研究了液滴半径对爆轰参数的影响:液滴半径增大,爆轰波压力和速度随之减小,DDT时间增加;液滴半径过大,则爆轰波不能形成.爆轰波压力计算值与实验值两者趋势符合得较好.  相似文献   

8.
甲醇-空气-氮气混合气预混球型火焰的试验研究   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同燃空当最比、初始压力、初始温度和气体稀释度下甲醇-空气-氮气混合气预混球型火焰的发展特性以及3种火焰锋面的不稳定性.获得了不同初始状态下的层流燃烧速度、质量燃烧流量和马克斯坦长度.高的初始压力时,火焰锋面生成的裂纹发展并形成细胞状结构.稀混合气时,浮力和电极的冷却作用对火焰的发展有重要影响.当量比在化学计量比附近时,随着初始温度的提高,流体动力学不稳定性被抑制.随着初始压力的增加,流体动力学不稳定性增强.稀释气的加入抑制了火焰锋面流体动力学的不稳定性.  相似文献   

9.
氢/空气火焰在半开口有障碍管道中的传播特性   总被引:3,自引:0,他引:3  
针对氢/空气混合物,通过实验研究了其预混火焰在半开口管道中的火焰传播加速现象。结果表明,火焰传播状态随着氢气当量比的变化而发生改变。当氢/空气混合物被点燃后,由于障碍物的扰动,火焰在管道中不断加速传播,并最终到达一准稳态传播。在氢气当量比0.34附近时,火焰速度发生跃变。当氢气当量比足够大时,火焰传播由爆燃态转变为爆轰态。在本实验条件下,爆燃转准爆轰的临界条件是d/λ=2.6(d是圆环形障碍物内径,λ是爆轰格胞尺度)。障碍物阻塞比的变化对最大火焰速度和压力提升的影响不明显。  相似文献   

10.
为了揭示90°弯曲管道结构对预混火焰传播特性的影响,以丙烷-空气预混火焰为研究对象,运用高速纹影摄像、微细热电偶以及离子探针等测试手段对火焰在90°弯曲管道内的传播过程进行了实验研究.结果表明,预混火焰结构在水平管道内发生了明显变化,由规则的球形层流火焰转变为具有轴对称结构向内凹陷的湍流火焰,并伴随火焰阵面的皱褶分层.火焰进入90°弯曲管道后,受几何形状影响,火焰阵面发生畸变,对称结构被破坏,下壁面处的火焰阵面逐渐超过上壁面处的火焰阵面.由于弯管内部多波叠加作用以及湍流的影响最终使得火焰速度呈现脉动振荡.  相似文献   

11.
This paper first studied the mitigation of the hydrogen/air mixture detonation wave by tuning the tube inner wall with the absorbing material of polyacrylonitrile (PAN)-based carbon fibre felt. The experimental tests were performed in a single-trial circular cross-section tube filled with premixed hydrogen and air detonative mixture. The pressure values and flame front propagation were measured by means of pressure transducers and photodiodes respectively. The attenuation regimes of detonation wave in walled tubes with different thicknesses and layouts of absorption material were compared. The PAN-based carbon fibre felt makes a significant attenuation on the detonation propagation. The decoupling of leading shock wave and flame front can be observed under the effect of this absorbing layer. The ultimate strength close to the tube end and propagation velocity of the combustion wave decrease with the increase of felt thickness. When the interval layout felt is adopted, the spacing distance has almost no impact on the attenuation effectiveness. When the sectional layout is adopted, the effectiveness of detonation mitigation is however improved for a higher proportion of the absorbing material.  相似文献   

12.
An experimental investigation on flame acceleration and transition to detonation in H2air mixtures has been carried out in a tube which had a 5 cm cross-sectional diameter and was 11 m long. Obstacles in the form of a spiral coil (6 mm diameter tubing, pitch 5 cm, blockage ratio BR = 0.44) and repeated orifice plates spaced 5 cm apart with blockage ratios of BR = 0.44 and 0.6 were used. The obstacle section was 3 m long. The compositional range of H2 in air extended from 10 to 45%, the initial pressure of the experiment was 1 atm, and the mixture was at room temperature. The results indicate that steady-state flame (or detonation) speeds are attained over a flame travel of 10–40 tube diameters. For H2 ? 13% maximum flame speeds are subsonic, typically below 200 m/s. A sharp transition occurs at about 13% H2 when the flame speed reaches supersonic values. A second transition to the so-called quasi-detonation regime occurs near the stoichiometric composition when the flame speed reaches a critical value of the order of 800 m/s. The maximum value of the averaged pressure is found to be between the normal C-J detonation pressure and the constant volume explosion value. Of particular interest is the observation that at a critical composition of about 17% H2 transition to normal C-J detonation occurs when the flame exits into the smooth obstacle-free portion of the tube. For compositions below 17% H2, the high speed turbulent deflagration is observed to decay in this portion of the tube. The detonation cell size for 17% H2 is about 150 mm and corresponds closely to the value of πD that has been proposed to designate the onset of single-head spinning detonation, in this case for the 5 cm diameter tube used. This supports the limit criterion, namely, that for confined detonations in tubes, the onset of single-head spin gives the limiting composition for stable propagation of a detonation wave.  相似文献   

13.
In this study, the detonation propagation mechanisms for the stoichiometric hydrogen-oxygen mixture are explored systematically in a circular tube with 6-m in length and an inner diameter of 90-mm. The continuous orifice plates with BR = 0.93 are adopted to investigate the characteristics of detonation diffraction, failure and initiation. High-speed piezoelectric pressure transducers are used to obtain the average velocity, and the smoked foil technique is adopted to record the detonation cellular patterns. The results indicate that three various propagation regimes can be observed, i.e., steady detonation, quasi-detonation and fast flame. In the smooth tube, only the steady detonation and fast flame modes are seen. When the initial pressure is greater than the critical value, the detonation can propagate at about the theoretical CJ velocity. Near the critical pressure, a sudden velocity drop is observed. Of note is that the single-headed spin and double-headed detonation cannot occur because of the limitation of the aspect ratio. In the tube filled with obstacles, the averaged wave velocity is decayed severely. Only the mechanisms of the quasi-detonation and fast flame can be seen. In the quasi-detonation mode, the critical value of d/λ is greater than 7.36, which is far larger than 1. Two different detonation ignition regimes produced by the shock reflection from the wall are observed, i.e., the initiation positions occur in the vicinity of the tube wall and the surface of the orifice plate.  相似文献   

14.
针对双点激光点火直接起爆过程中爆轰波的形成、发展和传播问题,采用高精度数值模拟方法求解带化学反应的二维欧拉方程组,研究了不同环境压力情况对流场结构与波系变化的影响.结果表明,环境压力会影响激波强度与爆轰波的传播速度,是决定双点激光点火形成的火核在碰撞过程中能否实现爆轰并维持爆轰波传播的重要因素,利用双激光点相互作用形成...  相似文献   

15.
The possibility is analysed of a laminar flame accelerating along a cylindrical tube, closed at one end, and inducing a deflagration to detonation transition in a stoichiometric H2/O2 mixture. The pressure and temperature ratios at the ensuing shock wave increase, as do laminar burning velocities, while autoignition delay times decrease. Combined with appreciable elongation of the flame, these enhance the strength of the shock. The conditions necessary for delay times of 0.05, 0.1, 1.0 and 5.0 ms, at an unburned mixture critical Reynolds number of 2300, are computed for different tube diameters. Probable consequences of the different delay times and hot spot reactivity gradients, including detonation, are all considered. The probability of a purely laminar propagation leading to a detonation is marginal. Only when the initial temperature is raised to 375 K, do purely laminar detonations become possible in tubes of between about 0.5 and 1.35 mm diameter.  相似文献   

16.
Experiments on shock waves propagation, spontaneous ignition, and flame development during high-pressure hydrogen release through tubes with symmetrical obstacles (O1-1) and asymmetrical obstacles (O1-2) are conducted. The obstacle's side is triangular with a length of 4 mm, a height of 3.6 mm, and its width is 15 mm. In the experiments, a reflected shock wave generates and propagates both upstream and downstream when the leading shock wave encounters the obstacle. At the same burst pressure, the reflected shock wave intensity in tube O1-1 is significantly greater than that in tube O1-2. Moreover, the presence of obstacles in the tube can induce spontaneous ignition. The minimum burst pressures for spontaneous ignition for tubes O1-1 and O1-2 are 2.84 MPa and 3.28 MPa respectively, lower than that for the smooth tube. Furthermore, both the initial ignition position and ignition time are greatly advanced in obstruction tubes, mainly affected by obstacle positions and burst pressures. Finally, the flame separation process near the obstacle is observed. After passing the obstacle, the flames grow rapidly in radial and axial directions on the tube sidewalls. And at the same burst pressure, the flame convergence time in tube O1-2 is usually longer than that in tube O1-1.  相似文献   

17.
With a validated fluid-structure-fracture coupling approach, this paper studied the dynamic response and crack propagation of pre-flawed square tube under internal hydrogen-oxygen detonation. Fracture of tube was judged by a bivariate failure criterion derived from the underlying failure mechanism at high strain rate conditions. A programed burn approach based on the CJ theory was applied to simulate gaseous detonation. The coupling between detonation wave and tube was realized by penalty contact algorithm with an improved contact stiffness calculation formula. It was demonstrated that the peak pressure at tube edge is 29% higher than that at the middle of tube face. The dominant crack driving force comes from the specific vibration and deformation modes of square tube, where the deformed round section of tube corresponds to the maximum stress wave that travels behind the flexural waves on the tube. Above mechanism makes the backward cracks branch or turn before the forward cracks and the speeds of front and back branch cracks comparable to each other, which is opposite or different from the cases of round tubes. The crack behaviors with different initial flaw locations and detonation pressures were summarized and identified in detail. The forward crack speed can be up to 900 m/s, while the backward crack speeds are generally 65%–85% of above and the branch cracks run at about 100 m/s. In addition, the crack speed has a certain increase immediately after crack branching or turning. Among the three initial flaw location cases, the tube with initial flaw at the middle of face is most resistant to crack propagation under internal detonations.  相似文献   

18.
To investigate the effects of varying right-angle corner locations inside the L-shaped tube on self-ignition induced by high-pressure hydrogen release, a series of experiments were carried out on L-shaped tubes with different right-angle corner locations and a straight tube was adopted for comparison. It is found that compared with the straight tube, the propagation of shock wave in the L-shaped tubes becomes more complicated due to the existence of reflected shock wave. The pressure profiles detected by pressure transducers before the right-angle corner will undergo secondary rapid rise. The varying right-angle corner locations inside the L-shaped tube have a significant influence on self-ignition of hydrogen. The closer the right-angle corner is to the burst disk, the lower the critical pressure that causes hydrogen self-ignition is. Three possible mechanisms of self-ignition inside the L-shaped tubes are discussed. Nevertheless, different right-angle corner locations have no obvious effects on development process of out-tube jet flame, only the velocity of flame tip and the length and width of jet flame have slight differences.  相似文献   

19.
We present a numerical investigation of gaseous deflagration-to-detonation transition (DDT) triggered by a shock in a multi-bend geometry. The ethylene-air mixture filled rigid tube with obstacles is considered for understanding the effects of complex confinement and initial flame size on DDT. Our calculations show generation of hot spots by flame and strong shock interactions, and flame propagation is either restrained or accelerated due to the wall obstacles of both straight and bent tubes. The effect of initial flame size on DDT in complex confinement geometry is analyzed as well as the hot spot formation on promoting shock–flame interaction, leading to a full detonation.  相似文献   

20.
The effect of cool flame partial oxidation on the detonation sensitivity of a hydrocarbon fuel was investigated experimentally. The detonation sensitivity was quantified by measuring the run-up distance required for a deflagration to transit to a detonation wave (DDT) in a rough tube. Fuel rich pentane-oxygen mixtures at sub-atmospheric initial pressures were studied. Subsequent to the injection of the mixture into a heated detonation tube, the mixture underwent cool flame oxidation after a well-controlled delay time, dependent on the temperature of the tube. Typical delays ranged from 0.5 to 2 s (depending on temperature) and were reproducible to within one hundred milliseconds. This delay permitted the mixture in the detonation tube to be spark-ignited at various stages of the cool flame process using an igniter driven by a delay generator. The results show that increasing mixture temperature from room temperature to values below the cool flame region (below 250°C) resulted in an increase in run-up distance. However, as the mixture began to undergo cool flame oxidization, a significant reduction in the run-up distance was obtained (as large as 50%). The sensitization effect was found to occur only at the initial stage of the cool flame oxidation reaction. If the mixture was ignited at times long after the onset of cool flame, the mixture was found to be desensitized and the run-up distance increased. The sensitizing effect of the cool flame partial oxidation may be attributed to the presence of peroxides and free radicals associated with the initial cool flame process. However, these radical species are consumed as the cool flame reaction proceeds and the mixture becomes insensitive again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号