首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
通过低饱和共沉淀法制备水滑石(LDH),采用反向原子转移自由基聚合(RATRP)法在水滑石片层表面接枝聚对苯乙烯磺酸钠(PSS),制备改性水滑石LDH-PSS,最后采用层层自组装法制备LDH/LDH-PSS复合纳滤膜,并研究复合纳滤膜对染料与二价盐的分离效果以及不同添加量和LDH/LDH-PSS层数对其性能的影响.分析复合纳滤膜对一价盐、二价盐以及活性黑的截留性能和膜的纯水通量,研究复合纳滤膜的分离性能.结果表明,复合纳滤膜的纯水通量随着水滑石和改性水滑石层数的增加而降低,复合纳滤膜的纯水通量最高达到145 L/(m~2·h·MPa).复合纳滤膜对活性黑5的截留率可达96.7%,且对二价无机盐MgSO_4的截留率低至20%以下.  相似文献   

2.
以聚砜(PSf)为基膜,间苯二胺(MPD)和均苯三甲酰氯(TMC)为反应单体,通过界面聚合制备聚酰胺复合纳滤膜.考察了复合催化剂三乙胺(TEA)和樟脑磺酸(CSA)及反应条件对纳滤膜功能层结构和性能的影响.结果表明:在反应体系中,TEA和CSA的质量比为1/2时,随着复合催化剂中TEA的质量分数从0.5%增加到3%,纳滤膜功能层密度增大,表面粗糙度和水接触角下降,膜通量明显升高,但纳滤膜的截留率及其对盐的选择顺序基本不变.在TEA质量分数为2%、反应时间40 s、热处理温度80℃和热处理时间3 min的最优条件下,所得复合纳滤膜对2 g/L MgSO4溶液的截留率为93.2%,通量为16 L/(m2·h).在0.2~1.0 MPa的操作压力下,聚酰胺复合纳滤膜分离性能稳定.  相似文献   

3.
以2,6-二氨基吡啶、均苯三甲酰氯为水相和油相单体,通过界面聚合法制备吡啶功能化聚酰胺(PA-PY)膜,随后利用酰氯水解羧基和吡啶氮原子与锌离子的配位作用,在膜表面原位生长ZIF-8(类沸石咪唑酯骨架材料-8),制备了ZIF-8/聚酰胺(ZIF-8/PA-PY)双层复合纳滤膜。扫描电镜分析结果表明:原位生长法可在PA-PY分离层生成晶型结构完整、致密的ZIF-8层,且随着原位生长时间的增加,ZIF-8层逐渐增厚。ZIF-8/PA-PY双层复合纳滤膜对负电性染料的截留率较高,原位生长时间为12h时,双层复合纳滤膜对甲基蓝截留率为97.9%,刚果红为99.6%。  相似文献   

4.
以聚砜超滤膜为基膜,通过聚酰胺-胺(PAMAM,G0)与均苯三甲酰氯(TMC)的界面聚合反应制备了复合纳滤膜.通过正交实验优化了纳滤膜的制备条件,并通过傅里叶变换红外光谱仪(FTIR-ATR)、场发射扫描电镜(FESEM)进行膜表面结构及形貌分析,测试了纳滤膜的盐截留能力.结果表明:纳滤膜制备条件确定为聚酰胺-胺(PAMAM,G0)浓度为0.25%,均苯三甲酰氯(TMC)浓度为0.3%,界面聚合时间为90s,热处理温度为80℃,热处理时间15min.界面聚合后在超滤膜表面形成了一层致密的聚酰胺(PA)活性皮层,所制得的复合纳滤膜盐截留顺序为Na_2SO_4MgSO_4MgCl_2NaCl,表明纳滤膜表面带有负电荷.纳滤膜处理采油废水时,存在过滤初期的通量快速下降、随后的缓慢下降以及最后的通量稳定3个阶段,且压力为0.7 MPa,0.9 MPa和1.1 MPa时所对应的通量由10L/(m~2·h)逐渐升高到22L/(m~2·h),其对采油废水的盐截留率处在12.6%~14%之间.  相似文献   

5.
采用电子束辐照的方法制备了聚甲基丙烯酸二甲氨基乙酯(PDM)/聚砜(PSF)中空纤维复合纳滤(NF)膜.研究了PDM水溶液的浓度、预涂膜的干燥时间、辐照时间、辐照剂量等制备条件与纳滤膜截留性能的关系.实验得到中空纤维内压纳滤膜对1g/L MgSO4的截留率为84.8%,对0.5g/L NaCl的截留率为12.8%.对纳滤膜截留性能的研究表明:(1)纳滤膜对阴离子的截留率与香农半径的变化规律相同,而阳离子相反,阴离子的价态对截留率的影响较小,而阳离子的价态对截留率的影响较大;(2)纳滤膜可实现单糖与多糖分离;(3)纳滤膜能有效截留纺丝废水中的[Amim]Cl.采用流动电位法研究纳滤膜的表面动电现象,研究了浓度和压力对膜的表面Zeta电位和电荷密度的影响.结果表明,纳滤膜的表面流动电位的绝对值(|△E|)和表面Zeta电位的绝对值(|ζ|)均随电解质溶液浓度和压力的增加而减小;|△E|在不同电解质溶液中的顺序为NaCl>MgCl2>KCl>KBr>Na2SO4>MgSO4;表面电荷密度的绝对值(|σd|)随电解质溶液浓度的增加而增加,随压力的增加而降低.采用流动电位法研究了功能层结构与纳滤膜截留性能的关系.实验表明,流动电位法可用于研究复合纳滤膜的截留机理和功能层结构.流动电位法可以得到膜表面电学参数,如流动电位(△E)、Zeta电位(ζ)和表面电荷密度(σd),这些参数的变化与功能层交联时间和纳滤膜截留率的变化一致.复合纳滤膜的|ζ|按照NazSO4>MgSO4>MgCl2增加,同截留率的变化一致.带侧基单体交联后得到的纳滤膜的表面电性能参数的绝对值小于不带侧基单体的.  相似文献   

6.
采用聚酰胺复合纳滤膜(BDXN-90)处理地表水中微量邻苯二甲酸二(2-乙基己基)酯(DEHP),研究了有机物、离子强度等因素对其截留行为的影响;探讨了在有机物共存的条件下,纳滤膜截留DEHP的机理.结果表明:BDXN-90纳滤膜能有效截留地表水中微量邻苯二甲酸二(2-乙基己基)酯,其截留率在98%以上,并且长时间运行稳定;膜过滤过程中,刚开始由于DEHP与膜表面之间的吸附截留率较高,当吸附趋于饱和截留率下降,最后随着膜污染的逐渐形成导致膜通量下降和截留率上升;影响截留行为的主要因素是离子强度和有机物:离子强度中和膜表面静电将膜基质压实,有机物与膜表面产生吸附导致膜污染.  相似文献   

7.
以NaOH溶液改性后的聚丙烯腈(PAN)超滤膜为基膜,对,对′-二氨基二苯甲烷(DDM)和均苯三甲酰氯(TMC)为单体,经过界面聚合反应制备复合纳滤膜。考察了胺浓度、酸接受剂浓度、界面聚合时间等对膜分离性能的影响。结合FTIR和环境扫描电镜(ESEM)研究复合膜的表面形态及断面结构,讨论了复合纳滤膜致密层的结构与其性能的关系。结果表明,采用界面聚合反应在PAN改性膜上已复合一层致密的表皮层,该致密表皮层是聚酰胺结构。  相似文献   

8.
以聚四氟乙烯(PTFE)平板膜为基膜,对其进行亲水改性后,以支化聚乙烯亚胺(PEI)和均苯三甲酰氯(TMC)为主要单体,通过界面聚合制备了荷正电聚四氟乙烯复合纳滤膜。采用红外光谱、扫描电子显微镜、原子力显微镜和固体表面Zata电位分析仪研究了复合纳滤膜的表面化学结构、微观形貌和荷电特性,结果表明,在亲水PTFE基膜表面形成了致密的多层结构,复合纳滤膜在pH为中性的条件下呈现荷正电。通过优化制备条件,复合纳滤膜对MgCl_2溶液的截留率达到95.7%,水通量为13.47 L/(m~2·h)(测试液浓度1000 mg/L,操作压力0.4 MPa)。此外,测试复合纳滤膜对不同盐溶液的截留率大小顺序为MgCl_2(95.7%)MgSO_4(90.7%)Na_2SO_4(77.5%)NaCl(58.1%),对聚乙二醇(PEG)的截留相对分子质量为402。研究表明制备的复合纳滤膜在硬水软化领域具有潜在的应用价值。  相似文献   

9.
以聚砜超滤膜为基膜,通过间苯二胺(PDA)与均苯三甲酰氯(TMC)界面聚合制备聚酰胺复合纳滤膜.系统地考察了界面聚合条件对所得复合膜性能的影响及膜对不同类型的无机盐的分离性能.详细表征了基膜与复合膜的表面形貌和接触角.结果表明:最佳聚合条件为:PDA质量分数1.5%,TMC质量分数0.1%,水相浸泡时间3min,反应时间20s,热处理温度80℃,热处理时间3min.在0.6MPa下,对2 000mg/L的MgSO4的截留率和通量分别为95.6%和7L/(m2·h).复合膜对四种不同类型无机盐的截留率的次序依次为Na2SO4MgSO4NaClMgCl2.此外,表面形貌和接触角研究表明通过界面聚合在基膜表面形成了一层聚酰胺功能层.  相似文献   

10.
通过氟化锂/稀盐酸刻蚀钛碳化铝合成单层二碳化三钛(Ti_3C_2T_x)纳米片,进而采用界面聚合方法制备一种MXene (Ti_3C_2T_x)掺杂的聚酰胺(PA)薄层复合纳滤膜,并对其渗透分离性能进行研究.以哌嗪(PIP)、Ti_3C_2T_x混合分散液作为水相、均苯三甲酰氯(TMC)的正己烷溶液作为有机相,在聚醚砜(PES)超滤膜支撑层上进行界面聚合,获得Ti_3C_2T_x掺杂的薄层复合纳滤膜.对Ti_3C_2T_x掺杂的薄层复合纳滤膜的微观结构、化学成分、表面润湿性、表面电荷特征进行详细的测试与表征,并考察了Ti_3C_2T_x掺杂量对复合纳滤膜表面微观结构和分离性能的影响.结果表明,聚酰胺皮层中Ti_3C_2T_x的掺杂增加了膜表面的粗糙度,降低了聚酰胺皮层的厚度,提高了膜表面的亲水性及负电性,并在硫酸钠盐截留率保持98%的同时提高了纳滤膜的纯水通量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号