首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have shown previously that all three fibronectin type-II modules of gelatinase A contribute to its gelatin affinity. In the present work the second type-II module was subjected to site-directed mutagenesis in order to localize its gelatin-binding site. The functional integrity of mutant proteins was assessed by their affinity for gelatin using gelatin-Sepharose affinity chromatography. The structural integrity of the mutant proteins, i.e. their resistance to thermal and chaotropic agent-induced denaturation, was characterized by CD spectroscopy. Our studies show that, in the case of mutants R19L, R38L, K50G, K50R and R19L/R38L, the mutations had no significant effect on the structure and gelatin affinity of the type-II module, excluding the direct involvement of these residues in ligand binding. In the case of mutants Y25A, Y46A, D49A and Y52A, the mutations yielded proteins that were devoid of gelatin affinity. Structural characterization of these proteins, however, indicated that they had also lost their ability to fold into the native structure characteristic of the wild-type domain. In the case of mutant Y37A, the structure and stability of the mutant protein is similar to the wild-type module. However, its gelatin affinity was severely impaired compared with the wild-type protein. The fact that the Y37A mutation impairs ligand binding without detectable distortion of the module's architecture suggests that Y37 is directly involved in ligand binding. Homology modeling based on the three-dimensional structure of the second type-II module of PDC-109 places Y37 on the right-hand rim of a hydrophobic pocket that includes residues F20, W39, Y46, Y52 and F54, and thus provides proof for the involvement of this pocket in ligand binding.  相似文献   

2.
Internal dynamics on the micro- to millisecond time scale have a strong influence on the affinity and specificity with which a protein binds ligands. This time scale is accessible through relaxation dispersion measurements using NMR. By studying the dynamics of a protein with different concentrations of a ligand, one can determine the dynamic effects induced by the ligand. Here we have studied slow internal dynamics of the N-terminal src homology 2 domain of phosphatidylinositide 3-kinase to probe the role of individual residues for the interaction with a tyrosine-phosphorylated binding sequence from polyoma middle T antigen. While slow dynamic motion was restricted to a few residues in the free SH2 and in the SH2 complex, motion was significantly enhanced by adding even small amounts of ligand. Kinetic rates induced by ligand binding varied between 300 and 2000 s(-1). High rates reflected direct interactions with the ligand or rearrangements caused by ligand binding. Large differences in rates were observed for residues adjacent in the primary sequence reflecting their individual roles in ligand interaction. However, rates were similar for residues involved in the same side chain interactions, reflecting concerted motions during ligand binding. For a subset of residues, exchange must involve structural intermediates which play a crucial role in high-affinity ligand binding. This analysis supports a new view of the dynamics of individual sites of a protein during ligand interaction.  相似文献   

3.
Cellular retinaldehyde-binding protein (CRALBP) carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the retinal pigment epithelium (RPE) and Müller cells of the retina and has been linked with autosomal recessive retinitis pigmentosa. Ligand interactions determine the physiological role of CRALBP in the RPE where the protein is thought to function as a substrate carrier for 11-cis-retinol dehydrogenase in the synthesis of 11-cis-retinal for visual pigment regeneration. However, CRALBP is also present in optic nerve and brain where its natural ligand and function are not yet known. We have characterized the interactions of retinoids with native bovine CRALBP, human recombinant CRALBP (rCRALBP) and five mutant rCRALBPs. Efforts to trap and/or identify a Schiff base in the dark, under a variety of reducing, denaturing, and pH conditions were unsuccessful, suggesting the lack of covalent interactions between CRALBP and retinoid. Buried and solvent-exposed lysine residues were identified in bovine CRALBP by reductive methylation of the holoprotein followed by denaturation and reaction with [3H]acetic anhydride. Radioactive lysine residues were identified by Edman degradation and electrospray mass spectrometry following proteolysis and purification of modified peptides. Human rCRALBP mutants K152A, K221A, and K294A were prepared to investigate possible retinoid interactions with buried or partially buried lysines. Two other rCRALBP mutants, I162V and Q210R, were also prepared to identify substitutions altering the retinoid binding properties of a random mutant. The structures of all the mutants were verified by amino acid and mass spectral analyses and retinoid binding properties evaluated by UV-visible and fluorescence spectroscopy. All of the mutants bound 11-cis-retinal essentially like the wild type protein, indicating that the proteins were not grossly misfolded. Three of the mutants bound 9-cis-retinal like the wild type protein; however, Q210R and K221A bound less than stoichiometric amounts of the 9-cis-isomer and exhibited lower affinity for this retinoid relative to wild type rCRALBP. Residues Gln-210 and Lys-221 are located within a region of CRALBP exhibiting sequence homology with the ligand binding cavity of yeast phosphatidylinositol-transfer protein. The data implicate Gln-210 and Lys-221 as components of the CRALBP retinoid binding cavity and are discussed in the context of ligand interactions in structurally or functionally related proteins with known crystallographic structures.  相似文献   

4.
We performed a series of experiments using alanine-scanning mutagenesis to locate side chains within human granulocyte colony-stimulating factor (G-CSF) that are involved in human G-CSF receptor binding. We constructed a panel of 28 alanine mutants that examined all surface exposed residues on helices A and D, as well as all charged residues on the surface of G-CSF. The G-CSF mutants were expressed in a transiently transfected mammalian cell line and quantitated by a sensitive biosensor method. We measured the activity of mutant proteins using an in vitro proliferation assay and an ELISA binding competition assay. These studies show that there is a region of five charged residues on helices A and C employed by G-CSF in binding its receptor, with the most important residue in this binding patch being Glu 19. Both wild-type G-CSF and the E19A mutant were expressed in E. coli. The re-folded proteins were found to have proliferative activities similar to the analogous proteins from mammalian cells: furthermore, biophysical analysis indicated that the E19A mutation does not cause gross structural perturbations in G-CSF. Although G-CSF is likely to signal through receptor homo-dimerization, we found no compelling evidence for a second receptor binding region. We also found no evidence of self-antagonism at high G-CSF concentrations, suggesting that, in contrast to human growth hormone (hGH) and erythropoietin (EPO), G-CSF probably does not signal via a pure 2:1 receptor ligand complex. Thus, G-CSF, while having a similar tertiary structure to hGH and EPO, uses different areas of the four helix bundle for high-affinity interaction with its receptor.  相似文献   

5.
The "J" domains of eukaryotic DnaJ-like proteins specify interaction with various Hsp70s. The conserved tripeptide, HPD, present in all J domains has been shown to be important for the interaction between yeast and bacterial DnaJ/Hsp70 protein pairs. We have characterized mutations in the HPD motif of the synaptic vesicle protein cysteine-string protein (Csp). Mutation of the histidine (H43Q) or aspartic acid (D45A) residues of this motif reduced the ability of Csp to stimulate the ATPase activity of mammalian Hsc70. The H43Q and D45A mutant proteins were not able to stimulate the ATPase activity of Hsc70 to any significant extent. The mutant proteins were characterized by competition assays, tryptic digestion analysis, and direct binding analysis from which it was seen that these proteins were defective in binding to Hsc70. Thus, the HPD motif of Csp is required for binding to Hsc70. We also analyzed the interaction between Csp and a model substrate protein, denatured firefly luciferase. Both Csp1 and the C-terminally truncated isoform Csp2 were able to prevent aggregation of heat-denatured luciferase, and they also cooperated with Hsc70 to prevent aggregation. In addition, complexes of Csp1 or Csp2 with Hsc70 and luciferase were isolated, confirming that these proteins interact and that Csps can bind directly to denatured proteins. Csp1 and Csp2 isoforms must differ in some aspect other than interaction with Hsc70 and substrate protein. These results show that both Csp1 and Csp2 can bind a partially unfolded protein and act as chaperones. This suggests that Csps may have a general chaperone function in regulated exocytosis.  相似文献   

6.
7.
Patch engineering is a technique for creating folded proteins that have new binding activities. Different protein scaffolds are used to present a patch of discontinuous residues on a folded-protein surface. By varying simultaneously the residues in these patches and displaying these mutant proteins on phage, one can select proteins that have new binding activities. Patch engineering is applicable to any protein fold. Novel proteins derived by this approach might replace antibodies in certain applications or provide lead molecules for the design of non-peptide analogues.  相似文献   

8.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

9.
14-3-3 proteins bind to the hinge 1 region of nitrate reductase (NR) and inhibit its activity. To determine which residues of NR are required for 14-3-3-inhibitory interactions, wild-type and mutant forms of Arabidopsis NR were examined in the yeast two-hybrid system and in vitro inhibition assays. NR fragments with or without hinge 1 were introduced into yeast with one of seven Arabidopsis 14-3-3 isoforms (called GF14s). NR fragments (residues 1-562 or 487-562) containing hinge 1 interacted with all GF-14s tested; an NR fragment (residues 1-487) lacking hinge 1 did not. GF14 binding to NR fragments was dependent on Ser-534, since Asp or Ala substitutions at this site blocked the interaction. Revertants with second site substitutions restoring interaction between GF14omega and the Ala- or Asp-substituted NR fragments were identified. One isolate had a Lys to Glu substitution at position 531, which is in hinge 1, and six isolates had Ile to Leu or Phe substitutions at 561 in the heme binding region. Double mutant forms of holo-NR (S534D plus K531E, I561F, or I561L) were constructed and found to be partially inhibited by protein extracts from Arabidopsis containing 14-3-3 proteins. Wild-type NR is phosphorylated and inhibited by these extracts, but S534D single mutant forms are not. These results show that inhibitory NR/14-3-3 interactions are dependent on Ser-534 but only in the context of the wild-type sequence, since substitutions at second sites render 14-3-3 binding and in vitro NR inhibition independent of Ser-534.  相似文献   

10.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

11.
In the transmembrane domain and cytoplasmic domain of human CD44 protein there are two cysteine residues. These two cysteines are conserved in all known mammalian CD44 proteins. The functions of these cysteine residues are not known. Site-specific mutagenesis was used to create CD44 mutant proteins lacking either one or both of these cysteine residues. Wild-type CD44 and mutant CD44 genes were transfected into CD44- Jurkat cells to establish stable transfectants. These transfectants were used to study whether these two cysteine residues are important in the binding of CD44(H) to fluorescein-conjugated hyaluronic acid (F-HA). Jurkat transfectant bearing wild-type CD44 did not bind F-HA, unless they were stimulated in vitro with immobilized anti-CD3 monoclonal antibody. Anti-CD3 antibody also stimulated the binding of F-HA in Jurkat CD44.C295A transfectant in which the cytoplasmic cysteine residue has been replaced with alanine. In contrast, anti-CD3 antibody failed to stimulate the binding of F-HA in Jurkat transfectant (CD44.C286A), in which the transmembrane domain cysteine 286 has been replaced with an alanine, and in Jurkat transfectant CD44.2C2A, in which both of the cysteine residues have been altered. Binding can also be induced with a monoclonal anti-CD44 antibody (F-44-10-2) in Jurkat wild-type CD44 and Jurkat CD44.C295A transfectants but not in CD44. C286A transfectant. These results provide evidence that the transmembrane domain of CD44, more specifically the cysteine residue in the transmembrane domain, is important for both activation-induced and anti-CD44 antibody-induced binding of soluble HA.  相似文献   

12.
A phage-displayed combinatorial peptide library was used to define the specificity of one of the three Src homology 3 (SH3) domains in a novel cytoskeletal protein, named CAP, for Cbl Associated Protein. The C-terminal SH3 domain was used to affinity select peptides with the consensus, PXPPXRXSSL, from a library of X6PXXPX6 peptides. Peptide sequences resembling this consensus were identified in two signal transduction proteins, c-Cbl and son-on-sevenless (Sos), previously shown to interact with the C-terminal SH3 domain of CAP. Genetic fusion of 16 and 14 amino acid segments of c-Cbl and Sos, respectively, to bacterial alkaline phosphatase confirmed that these segments were potential ligand sites for the C-terminal SH3 domain of CAP. Alanine-scanning mutagenesis of the c-Cbl peptide ligand confirmed that most of the residues, which were conserved among the peptide ligands selected from the combinatorial peptide library, contributed to binding to the C-terminal SH3 domain of CAP.  相似文献   

13.
The homeodomain (HD) is a ubiquitous protein fold that confers DNA binding function on a superfamily of eukaryotic gene regulatory proteins. Here, the DNA binding of recognition helix variants of the HD from the engrailed gene of Drosophila melanogaster was investigated by phage display. Nineteen different combinations of pairwise mutations at positions 50 and 54 were screened against a panel of four DNA sequences consisting of the engrailed consensus, a non-specific DNA control based on the lambda repressor operator OR1 and two model sequence targets con-taining imperfect versions of the 5'-TAAT-3' consensus. The resulting mutant proteins could be divided into four groups that varied with respect to their affinity for DNA and specificity for the engrailed consensus. The altered specificity phenotypes of several mutant proteins were confirmed by DNA mobility shift analysis. Lys50/Ala54 was the only mutant protein that exhibited preferential binding to a sequence other than the engrailed consensus. Arginine was also demonstrated to be a functional replacement for Ala54. The functional combinations at 50 and 54 identified by these experiments recapitulate the distribution of naturally occurring HD sequences and illustrate how the engrailed HD can be used as a framework to explore covariation among DNA binding residues.  相似文献   

14.
Examination of the X-ray crystal structure of the 43 kDa N-terminal domain of the DNA gyrase B protein (GyrB) shows that the majority of the interactions with bound ATP are made with subdomain 1 (residues 2-220). However, two residues from subdomain 2, Gln335 and Lys337, interact with the gamma-phosphate of ATP. The proposed roles for these residues include nucleotide binding, transition-state stabilization, and triggering protein conformational changes. We have used site-directed mutagenesis to convert Gln335 to Asn and Ala and Lys337 to Gln and Ala in the N-terminal domain of GyrB. Two of the resultant mutant proteins, GyrB43(Q335A) and GyrB43(K337Q), were shown to be correctly folded, and their interactions with ATP have been analyzed in detail. The Q335A protein is apparently unchanged with regard to nucleotide binding and hydrolysis, whereas the K337Q protein shows a modest decrease in nucleotide binding and a drastic reduction in ATPase activity. This is manifested by a approximately 10(3)-fold decrease in kcat. When the two mutations were moved into full-length GyrB, the Q335A mutation again showed little or no effect on activity, whereas the K337Q mutation had undetectable supercoiling and ATPase activities. We conclude that Gln335 is dispensable for ATP binding and hydrolysis by the gyrase B protein, whereas Lys337 has a critical role in the ATPase reaction and is likely to be a key residue in transition-state stabilization.  相似文献   

15.
Although ligand binding in c-type cytochromes is not directly related to their physiological function, it has the potential to provide valuable information on protein stability and dynamics, particularly in the region of the methionine sixth heme ligand and the nearby peptide chain that has been implicated in electron transfer. Thus, we have measured the equilibrium and kinetics of binding of imidazole to eight mutants of Rhodobacter capsulatus cytochrome c2 that differ in overall protein stability. We found that imidazole binding affinity varies 70-fold, but does not correlate with overall protein stability. Instead, each mutant exerts an effect at the local level, with the largest change due to mutant G95E (glycine substituted by glutamate), which shows 30-fold stronger binding as compared with the wild-type protein. The kinetics of imidazole binding are monophasic and reach saturation at high ligand concentrations for all the mutants and wild-type protein, which is attributed to a rate-limiting conformational change leading to breakage of the iron-methionine bond and providing a binding site for imidazole. The mutants show as much as an 18-fold variation in the first-order rate constant for the conformational change, with the largest effect found with mutant G95E. The kinetics also show a lack of correlation with overall protein stability, but are consistent with localized effects on the dynamics of hinge region 88-102 of the protein, which changes conformation to permit ligand binding. These results are consistent with R. capsulatus cytochrome c2 stabilizing the complex through hydrogen bonding to the imidazole. The larger effects of mutant G95E on equilibrium and kinetics are likely to be due to its location within the hinge region adjacent to heme ligand methionine 96, which is displaced by imidazole.  相似文献   

16.
Macrophage scavenger receptors are trimeric integral membrane proteins that bind a diverse array of negatively charged ligands. They have been shown to play a role in the pathogenesis of atherosclerosis and in host responses to microbial infections. Earlier mutational studies demonstrated that the distal segment of the collagen domain of the receptor was critically important for high affinity ligand binding activity. In this study, mutations spanning the entire collagen domain were generated and binding was assayed in transfected cells, as well as in assays employing a secreted, receptor fusion protein. Many of the distal, positively charged C-terminal residues in the type II collagen domain of the receptor, previously reported to be essential for binding at 37 degreesC, were found not to be critical for binding at 4 degreesC. Conversely, more proximally charged residues of the collagen receptor that have not been previously mutated were shown to have substantial effects on binding that were also temperature-dependent. These data suggest that scavenger receptor ligand recognition depends on more complex conformational interactions, involving charged residues throughout the entire collagen domain, than was previously recognized.  相似文献   

17.
Bovine acyl-coenzyme A binding protein is a four-helix bundle protein belonging to a group of homologous eukaryote proteins that binds medium and long-chain acyl-coenzyme A esters with a very high affinity. The three-dimensional structure of both the free and the ligated protein together with the folding kinetics have been described in detail for the bovine protein and with four new sequences reported here, a total of 16 closely related sequences ranging from yeasts and plants to human are known. The kinetics of folding and unfolding in different concentrations of guanidine hydrochloride together with equilibrium unfolding have been measured for bovine, rat and yeast acyl-coenzyme A binding protein. The bovine and rat sequences are closely related whereas the yeast is more distantly related to these. In addition to the three natural variants, kinetics of a bovine mutant protein, Tyr31 --> Asn, have been studied. Both the folding and unfolding rates in water of the yeast protein are 15 times faster than those of bovine. The folding rates in water of the two mammalian forms, rat and bovine, are similar, though still significantly different. A faster unfolding rate both for rat and the bovine mutant protein results from a lower stability of the native states of these. These hydrophobic regions, mini cores, have been identified in the three-dimensional structure of the bovine protein and found to be formed primarily by residues that have been conserved throughout the entire eukaryote evolution from yeasts to both plants and mammals as seen in the sample of 16 sequences. The conserved residues are found to stabilize helix-helix interactions and serve specific functional purposes for ligand binding. The fast one-step folding mechanism of ACBP has been shown to be a feature that seems to be maintained throughout evolution despite numerous differences in sequence and even dramatic differences in folding kinetics and protein stability. The protein study raises the question to what extent does the conserved hydrophobic residues provide a scaffold for an efficient one-step folding mechanism.  相似文献   

18.
A thromboxane A2 receptor cDNA was isolated from a human placenta library by polymerase chain reaction (PCR) and was expressed in insect (Sf21) cells using baculovirus system. The recombinant receptor exhibited [3H]-SQ29548 and [125I]-BOP binding activities with Kd values of 1.01 +/- 0.09 nM and 1.63 +/- 0.23 nM, respectively. The receptor binding activity was inhibited by dithiothreitol in a time- and concentration-dependent manner, indicating the involvement of disulfide linkage in ligand binding. The role of the four conserved cysteinyl residues in ligand binding was further examined by site-directed mutagenesis. Each of the four cysteinyl residues was respectively mutated to a serine residue. C102S, C105S, and C183S mutants exhibited no ligand binding activity although successful expression was achieved as revealed by immunoblot analysis, whereas C257S mutant retained most of the binding activity. Homology analysis of all prostanoid receptors indicates that Cys-105 (first extracellular loop) and Cys-183 (second extracellular loop) are conserved and are presumed to form a disulfide bond for receptor stability as suggested by the inhibition of ligand binding by dithiothreitol reduction. Loss of binding activity by C102S mutant revealed that the sulfhydryl group of Cys-102 must play an essential role in ligand binding. Molecular modeling proposed that the Ser-201 is involved in interacting with TXA2 by forming hydrogen bonding. Point mutations of both Ser-201 and a conserved Ser-255 did not affect the ligand binding specificity and affinity for [3H]-SQ29548, but have significantly altered Kd values for [125I]-BOP. These results indicate that various cysteinyl and serine residues of thromboxane A2 receptor may play different roles in ligand binding.  相似文献   

19.
Protein farnesyltransferase (FTase) is a zinc metalloenzyme that performs a post-translational modification on many proteins that is critical for their function. The importance of cysteine residues in FTase activity was investigated using cysteine-specific reagents. Zinc-depleted FTase (apo-FTase), but not the holoenzyme, was completely inactivated by treatment with N-ethylmaleimide (NEM). Similar effects were detected after treatment of the enzyme with iodoacetamide. The addition of zinc to apo-FTase protects it from inactivation by NEM. These findings indicated the presence of specific cysteine residue(s), potentially located at the zinc binding site, that are required for FTase activity. We performed a selective labeling strategy whereby the cysteine residues exposed upon removal of zinc from the enzyme were modified with [3H]NEM. The enzyme so modified was digested with trypsin, and four labeled peptides were identified and sequenced, one peptide being the major site of labeling and the remaining three labeled to lesser extents. The major labeled peptide contained a radiolabeled cysteine residue, Cys299, that is in the beta subunit of FTase and is conserved in all known protein prenyltransferases. This cysteine residue was changed to both alanine and serine by site-directed mutagenesis, and the mutant proteins were produced in Escherichia coli and purified. While both mutant proteins retained the ability to bind farnesyl diphosphate, they were found to have lost essentially all catalytic activity and ability to bind zinc. These results indicate that the Cys299 in the beta subunit of FTase plays a critical role in catalysis by the enzyme and is likely to be one of the residues that directly coordinate the zinc atom in this enzyme.  相似文献   

20.
FLT3 ligand (FLT3L) stimulates primitive hematopoietic cells by binding to and activating the FLT3 receptor (FLT3R). We carried out a structure-activity study of human FLT3L in order to define the residues involved in receptor binding. We developed a rapid method to screen randomly mutagenized FLT3L using a FLT3R-Fc fusion protein to probe the relative binding activities of mutated ligand. Approximately 60,000 potential mutants were screened, and the DNA from 59 clones was sequenced. Thirty-one single amino acid substitutions at 24 positions of FLT3L either enhanced or reduced activity in receptor binding and cell proliferation assays. Eleven representative proteins were purified and analyzed for receptor affinity, specific activity, and physical properties. Receptor affinity and bioactivity were highly correlated. FLT3L affinity for receptor improved when four individual mutations that enhance FLT3L receptor affinity were combined in a single molecule. A model of FLT3L three-dimensional structure was generated based on sequence alignment and x-ray structure of macrophage colony-stimulating factor. Most residues implicated in receptor binding are widely dispersed in the primary structure of FLT3L, yet they localize to a surface patch in the tertiary model. A mutation that maps to and is predicted to disrupt the proposed dimerization interface between FLT3L monomers exhibits a Stokes radius that is concentration-dependent, suggesting that this mutation disrupts the FLT3L dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号