首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
Pt-Ru疏水催化剂制备及氢-水液相交换催化性能   总被引:1,自引:0,他引:1  
用乙二醇为还原剂和碳黑分散溶剂,微波快速加热,1~2 MPa压力下制备了Pt/C和Pt-Ru/C催化剂,用XRD、TEM和XPS对其进行了表征.Pt/C和Pt-Ru/C催化剂活性金属平均粒径为1.9~2.0 nm.随Ru的加入,活性金属粒子的面心立方结构逐渐不明显.Pt-Ru/C中Pt以Pt(0)、Pt(Ⅱ)和Pt(Ⅳ)形式存在,Ru以Ru(0)和Ru(Ⅳ)形式存在.再将Pt/C、Pt-Ru/C催化剂与聚四氟乙烯一起负载于泡沫镍,得到疏水催化剂,研究了其对氢-水液相交换反应的催化活性.研究中观察到,Pt中掺入适量Ru可提高单一Pt基疏水催化剂的催化活性.其可能的原因是:水在Pt表面不解离,Pt表面氢气与水间同位素交换通过形成中间体(H2O)nH+(ads)(n≥2)进行,而水在Ru表面会发生解离,Pt-Ru疏水催化剂同时存在另一条反应路径.  相似文献   

2.
通过在5%O2+N2流中加热气化和浓HNO3表面氧化处理,获得表面改性活性炭担体,采用H2PtCl6水溶液浸渍法制备Pt/C催化剂。实验结果表明:铂在未经改性的担体表面的粒径分布不均匀,且易发生再团聚而形成较多的大颗粒铂粒子;改性担体上的铂呈均匀分布的高分散状态,其平均粒径为7nm。  相似文献   

3.
氢-苯乙烯体系中氢-氚同位素交换反应的热力学研究   总被引:3,自引:0,他引:3  
采用6-311G全电子基函数和B3p86方法对聚苯乙烯-二乙烯基苯(polystyrene-divinylbenzene,SDB)单体之一的苯乙烯分子结构进行优化计算.根据热力学原理,计算得到SDB官能团分子氢氚取代反应在不同温度下的标准生成自由能函变、反应平衡常数及氚气和氢气的反应平衡压力比.结果表明,温度的升高不利于氢氚取代反应T2(g) SDB(H2)(s)→H2(g) SDB(T2)(s)正向进行,这与Pt/SDB疏水催化剂在氢-水同位素交换的催化反应实验过程中的氢氚取代研究结论一致.  相似文献   

4.
以异丙醇为分散溶剂与还原剂,采用高压微波加热法制备了Pt/C催化剂,研究了不同实验条件对Pt尺寸的影响,利用XRD、TEM对催化剂进行了表征。再将Pt/C催化剂和聚四氟乙烯混合,负载至泡沫镍上得到疏水催化剂,研究其对氢 水液相催化交换反应的催化性能。结果表明:加入保护剂乙酸钠、羟基乙酸钠、柠檬酸氢二钠后,Pt/C催化剂的活性金属团聚现象减少,Pt平均尺寸明显减小(由4.4 nm分别降低到2.3、2.5、2.3 nm);升温速率对Pt尺寸影响较大,随着升温速率的提高,活性金属Pt的尺寸减小;而pH的变化对Pt粒子的尺寸影响较小。加入保护剂有利于氢 水交换反应的催化剂活性,Pt尺寸为2.3~4.4 nm时,催化剂活性随Pt尺寸减小而提高。  相似文献   

5.
采用气-液逆流方式研究了Pt/C/PTFE有序床疏水催化剂对H_2(g)/HDO(l)体系中同位素交换的催化性能。结果表明:Pt/C/PTFE有序床催化剂不仅具有较高的催化活性和良好的疏水性,而且能够达到很高的气体流速;实验所用的两种Pt/C/PTFE的体积传质系数(K_(ya))均达1.12m~3(STP)/(s·m~3)(50mol/(m~3·s))以上,且用水浸泡35d后其催化活性无明显变化;在气液摩尔比为1∶1的条件下,气体空塔线速率达到1.0m/s时,两种填装的有序床Pt/C/PTFE均未发生液泛。  相似文献   

6.
为了处理高浓氚水,搭建了一台氢-水同位素交换串联水汽变换的两级钯膜反应器装置,可以实现级联处理工艺。以天然水代替氚水为源项,以D2代替H2开展了除氢实验,最高获得了207.4的除氢因子,验证了两级钯膜反应器用于处理氚水的可行性。通常情况下,水汽变换反应的除氢因子大于氢-水同位素交换反应。其中,氢-水同位素交换中D2/H2O体积流量比越大,该反应除氢因子越大;氢-水同位素交换中原料侧压力越大,该反应除氢因子越大;原料水流量越大,两个反应的除氢因子均会下降。由于一级膜反应器采用氢-水同位素交换可将氚水浓度降低1个量级以上,因而可以尽量避免二级膜反应器中CO与高浓氚接触,抑制含氚有机物的生成。由此可见,两级钯膜反应器有望成为一种高效的氚水处理装置。  相似文献   

7.
Pt/PTFE/泡沫SiC规整疏水催化剂可用于氢-水液相催化交换反应(Liquid-phase catalytic exchange process,LPCE)进行水去氚化(Water detritiation system,WDS)。为研究浸渍溶液对该催化剂性能的影响,以丙酮、乙二醇、无水乙醇分别配制不同的氯铂酸-有机溶液,直接浸渍具有疏水性的PTFE/泡沫SiC,250°C气相还原,从而制备Pt/PTFE/泡沫SiC规整疏水催化剂。利用X射线衍射分析(X-ray diffraction,XRD)、X射线光电子能谱分析(X-ray photoelectron spectroscopy,XPS)、透射电子显微镜(Transmission electron microscope,TEM)等表征手段分析所得催化剂的结构与组成,并研究其氢-水液相催化交换性能。三种催化剂的平均粒径分别为9.3 nm、3.6 nm、6.8 nm,乙二醇对Pt粒子有保护作用,得到的平均粒径最小。Pt存在Pt(0)、Pt(II)和Pt(IV)三种价态,氯铂酸-乙醇和氯铂酸-乙二醇制备的催化剂中0价态均为主要价态,Pt(0)比例分别为47.60%和43.97%,氯铂酸-丙酮制备的催化剂中4价态为主要价态。根据LPCE性能测试结果,氯铂酸-乙二醇制备的催化剂柱效率最高,说明催化剂中Pt(0)价态比例接近时,Pt粒子粒径大小对氢-水液相催化交换反应的影响更明显。揭示乙二醇为优选溶剂。  相似文献   

8.
汽相催化交换(VPCE)是水除氚的重要手段之一,本研究采用金属Ni替代常用的贵金属Pt作为逆流型VPCE工艺的催化剂,研究了其在多种实验条件下HDO-H2反应体系中的静态及动态催化交换性能。实验结果表明:静态实验时,催化剂在温度大于200℃、压力和反应物浓度的摩尔比值(HDO∶H2)越大的条件下,催化交换反应向正方向移动,催化性能更好;在Ni高负载率的情况下,其催化性能优于Pt基催化剂。动态实验时,产物平衡氘浓度与静态实验一致,H2中氘摩尔浓度均为1%左右;且进料比例对结果的影响规律与静态实验一致,反应物HDO越多,产物氘浓度越大。本研究表明了纯Ni催化剂在HDO-H2催化交换反应体系中有着较为明显的催化作用,可以替代传统贵金属Pt作为逆流型VPCE工艺的催化剂。  相似文献   

9.
采用常规浸渍还原法、改进浸渍还原法和高压微波加热法分别制备20%Pt/C催化剂,用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂表征.三种方法制备的催化剂Pt粒径分别为2.9、2.0和1.9 nm,标准差分别为0.8、0.7和0.5 nm,高压微波加热法和改进浸渍还原法催化剂中Pt(0)含量分别为40.9%和43.3%.对高压微波加热法催化剂用H2/N2混合气300℃还原处理2 h,或500℃处理1 h,Pt粒径分别增至2.2和2.1姗,Pt(0)含量分别增至44.3%和49.7%.将Pt/C催化剂与聚四氟乙烯-起负载于泡沫镍(FN)载体,制备Pt/C/FN疏水催化剂,考察其对氢水液相交换反应的催化活性.影响疏水催化剂活性的因素包括Pt粒径大小及Pt(0)含量,降低Pt/C催化剂上Pt粒径大小,或提高Pt单质含量,均可提高疏水催化剂活性.  相似文献   

10.
氢-水液相交换疏水催化剂制备及活性影响因素研究进展   总被引:1,自引:0,他引:1  
氢-水液相催化交换反应(LPCE)可用于含氚废水处理、含氚重水提氚、重水升级和重水生产等工艺,疏水催化剂是实现LPCE的关键。本文对疏水催化剂的制备方法及活性影响因素进行了综述,重点介绍了Pt/C/惰性载体类疏水催化剂的研究进展,包括惰性载体、活性金属载体的选择,碳负载Pt基催化剂制备方法,详细介绍了围绕疏水催化剂制备开展的基础研究工作,如LPCE微观反应机理,活性金属微观结构与催化活性的关系等。对疏水催化剂这一领域有待解决的问题及下一步的研究方向进行了探讨。  相似文献   

11.
为提升疏水催化剂性能并扩展其应用范围,以柱状(ø=5 mm)多孔陶瓷为载体,在载体表层构筑氧化铈(CeO2)微纳结构为载体提供疏水环境,采用浸渍还原法制备用于氢同位素交换分离的新型Pt/疏水陶瓷催化剂。为验证新型疏水催化剂实用性,以X射线衍射(XRD)、扫描电镜(SEM)、X光电子能谱(XPS)、一氧化碳(CO)脉冲吸附、能谱(EDX)对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,新型陶瓷载体疏水性优良,疏水结构对载体孔结构性能影响较小;疏水层使浸渍液对载体浸润能力下降,铂粒子分散度及零价铂含量降低;浸润能力下降使前驱体多沉积在载体表层而较难渗入载体内部,表层铂粒子含量高,使反应物的反应通道较短,相同时间内有更多的铂粒子参与反应。制得催化剂催化活性可达同种形状有机载体类催化剂催化活性的80%,冲淋12周后,催化活性下降比率小于5%,新型疏水催化剂催化活性及耐冲淋稳定性均较好,实用性佳,具有良好的应用前景。  相似文献   

12.
贾青青  胡石林  刘亚明 《同位素》2021,34(1):46-53,I0003
为验证疏水结构对催化剂性能的影响规律,研究以柱状(φ=5 mm)多孔陶瓷为载体,在载体表层构筑三种不同的氧化铈(CeO2)微纳结构为载体提供疏水环境,通过浸渍-气相还原法制得用于氢同位素分离的Pt/疏水陶瓷催化剂,以X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDX)、X光电子能谱(XPS)及一氧化碳(CO)脉冲吸附等对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,不同疏水结构对载体孔结构及零价铂含量影响可忽略不计,对铂粒子在载体表层的富集程度及催化剂铂粒子分散度影响明显,制得的催化剂催化活性差距明显。分布均匀且对载体覆盖率高的绒毛状疏水结构可使得更多的铂粒子沉积在载体表层,可获得更优的催化活性。  相似文献   

13.
The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platimun supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms.  相似文献   

14.
用于氢-水同位素交换的Pt-PTFE类憎水催化剂的研制   总被引:2,自引:2,他引:0  
研制了以铂为活性成分,聚四氟乙烯(PTFE)为憎水材料,活性炭、二氧化硅等作载体的憎水催化剂。在滴流床上,进行了氢-水气液逆流氢同位素交换反应,讨论了载体、铂含量及PTEF量对催化剂活性的影响。结果表明,以活性炭为载体,聚四氟乙烯与Pt-C粉的质量比在1-2时,Pt-C-PTFE催化剂的活性高;交换反应的总体积传质系数随反应温度和氢气流量的增加而增大。  相似文献   

15.
研究采用液相还原法制备10%Pt/C催化剂,再将其与PTFE一起负载于多孔金属载体,制备Pt/C/PTFE疏水催化剂。用XRD表征Pt/C催化剂上Pt晶相结构和粒径大小,Pt粒子平均粒径为3.1nm;SEM表征PTFE与Pt/C催化剂的分散状态,二者基本混合均匀,局部地方有因未均匀分散而形成的PTFE膜。由于催化剂疏水性不够,PTFE与Pt/C质量比为0.5∶1时,Pt/C/PTFE催化剂活性较低,比例增至1∶1,催化剂活性明显增加,而继续增加PTFE比例,有更多的Pt活性位被包覆在PTFE中,同时催化剂内扩散效应增加,催化剂活性又逐渐降低。对多孔金属载体预处理,PTFE与Pt/C质量比为0.5∶1时,Pt/C/PTFE催化剂活性增加,而比例升为1∶1时,催化剂活性降低。  相似文献   

16.
A room-temperature reactor packed with hydrophobic catalysts for the oxidation of hydrogen isotopes released in a nuclear facility will contribute to nuclear safety. The inorganic-based hydrophobic Pt catalyst named H1P has been developed especially for efficient oxidation over a wide concentration range of hydrogen isotopes at room temperature, even in the presence of saturated water vapor. The overall reaction rate constant for hydrogen oxidation with the H1P catalyst in a flow-through system using a tritium tracer was determined as a function of space velocity, hydrogen concentration in carriers, temperature of the catalyst, and water vapor concentration in carriers. The overall reaction rate constant for the H1P catalyst in the range near room temperature was considerably larger than that for the traditionally applied Pt/Al2O3 catalyst. Moreover, the decrease in reaction rate for H1P in the presence of saturated water vapor was slight compared with the reaction rate in the absence of water vapor due to the excellent hydrophobic performance of H1P. Oxidation reaction on the catalyst surface is the rate-controlling step in the range near room temperature and the rate-controlling step is shifted to diffusion in a catalyst substratum above 313K due to its fine porosity. The overall reaction rate constant in the range near room temperature was dependent on the space velocity and hydrogen concentration in carriers. The overall reaction rate constants in the range of 1;000=T greater than 3.2 correlated to k overall[s?1] = 5.59 × 107 × SV[h?1] × exp (?67.7 [kJ/mol]/RgT), where the space velocity range was from 600 to 7,200 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号