首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that the phonon coupling to the electronic system in individual metallic single-walled carbon nanotubes is not due to coupling to low-energy plasmons. The evidence stems from the measured Raman-Stokes G-mode, which for metallic and semiconducting tubes could be fitted well by the superposition of only two Lorentzian lines associated with vibrational modes along the nanotube axis and the nanotube circumference. In the case of metallic tubes the lower-energy G mode is significantly broadened, however maintaining the Lorentzian line shape, in contrast to the theoretically expected asymmetric Breit-Wigner-Fano line shape from phonon-plasmon coupling. The results were obtained by studying 25 individual metallic and semiconducting single-walled carbon nanotubes with atomic force microscopy, electron transport measurements, and resonant Raman spectroscopy.  相似文献   

2.
We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.  相似文献   

3.
Luo J  Ouyang W  Li X  Jin Z  Yang L  Chen C  Zhang J  Li Y  Warner JH  Peng LM  Zheng Q  Zhu J 《Nano letters》2012,12(7):3663-3667
Vibration of nanotubes/wires is significant for fundamental and applied researches. However, it remains challenging to control the vibration with point-level precision. Herein, individual suspended carbon nanotubes are plucked point by point to vibrate in scanning electron microscope with the electron beam as a nanoscale pointer. The vibration is directly imaged, and its images fit well with simulations from the plucking mechanism. This demonstrates a new way to manipulate the nanotube vibration with unprecedented precision.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.  相似文献   

5.
We present a chemical vapor deposition (CVD) method for the growth of uniform single-walled carbon nanotube (SWNT) arrays on a stable temperature (ST)-cut single crystal quartz substrate using a mixture of methanol and ethanol as carbon source. It is found that introducing methanol during the growth can improve the density and the length of the well-aligned SWNTs in the arrays as well as increase the SWNT/quartz interaction. Obvious “up-shifts” of G-band frequencies in the Raman spectra have been found for the aligned SWNTs. A welldesigned control experiment shows that the G-band “up-shifts” originate from the strong interaction between SWNTs and the quartz substrate. It is believed that exploring this interaction will help to elucidate the growth mechanism; ultimately, this will help realize the promise of controlling the chirality of SWNTs.  相似文献   

6.
Resonant Raman spectroscopy of single carbon nanotubes suspended across trenches displays red-shifts of up to 30 meV of the electronic transition energies as a function of the surrounding dielectric environment. We develop a simple scaling relationship between the exciton binding energy and the external dielectric function and thus quantify the effect of screening. Our results imply that the underlying particle interaction energies change by hundreds of meV.  相似文献   

7.
A scanning near-field optical microscope (SNOM) is used to systematically study the properties of guided modes in linear and slow-light regimes of silicon-on-insulator (SOI)-based photonic crystal waveguides (PhCWs) with different terminations of the photonic lattice. High quality SNOM images are obtained for light at telecom wavelengths propagating in the PhCW, demonstrating directly, for the first time to our knowledge, drastic widening of the PhCW guided mode in the slow-light regime and excitation of surface waves at the PhCW interface along with their feeding into the guided mode for the lattice terminations corresponding to significantly reduced coupling loss.  相似文献   

8.
Cao J  Wang Q  Dai H 《Nature materials》2005,4(10):745-749
Single-walled carbon nanotubes have shown a wealth of quantum transport phenomena thus far. Defect-free, unperturbed single-walled carbon nanotubes with well behaved or tunable metal contacts are important for probing the intrinsic electrical properties of nanotubes. Meeting these conditions experimentally is non-trivial owing to numerous disorder and randomizing factors. Here we show that approximately 1-microm-long fully suspended single-walled carbon nanotubes grown in place between metal contacts afford devices with well defined characteristics over much wider energy ranges than nanotubes pinned on substrates. Various low-temperature transport regimes in true-metallic, small- and large-bandgap semiconducting nanotubes are observed, including quantum states shell-filling, -splitting and -crossing in magnetic fields owing to the Aharonov-Bohm effect. The clean transport data show a correlation between the contact junction resistance and the various transport regimes in single-walled-carbon-nanotube devices. Furthermore, we show that electrical transport data can be used to probe the band structures of nanotubes, including nonlinear band dispersion.  相似文献   

9.
The development of single-walled carbon nanotubes for various biomedical applications is an area of great promise. However, the contradictory data on the toxic effects of single-walled carbon nanotubes highlight the need for alternative ways to study their uptake and cytotoxic effects in cells. Single-walled carbon nanotubes have been shown to be acutely toxic in a number of types of cells, but the direct observation of cellular uptake of single-walled carbon nanotubes has not been demonstrated previously due to difficulties in discriminating carbon-based nanotubes from carbon-rich cell structures. Here we use transmission electron microscopy and confocal microscopy to image the translocation of single-walled carbon nanotubes into cells in both stained and unstained human cells. The nanotubes were seen to enter the cytoplasm and localize within the cell nucleus, causing cell mortality in a dose-dependent manner.  相似文献   

10.
Electrically-heated suspended, nearly defect-free, carbon nanotubes (CNTs) exhibiting negative differential conductance in the high bias regime experience a sudden drop in current (or “kink”). The bias voltage at the kink (V kink) is found to depend strongly on gate voltage, substrate temperature, and gas environment. After subtracting the voltage drop across the contacts, however, the kink bias voltages converge around 0.2 V, independent of gate voltage and gas environment. This bias voltage of 0.2 V corresponds to the threshold energy of optical phonon emission. This phenomenon is corroborated by simultaneously monitoring the Raman spectra of these nanotubes as a function of bias voltage. At the kink bias voltage, the G band Raman modes experience a sudden downshift, further indicating threshold optical phonon emission. A Landauer model is used to fit these kinks in various gas environments where the kink is modeled as a change in the optical phonon lifetime, which corresponds to a change in the non-equilibrium factor that describes the existence of hot phonons in the system.   相似文献   

11.
Because of their extraordinary electronic and mechanical properties, carbon nanotubes have great potential as materials for applications ranging from molecular electronics to ultrasensitive biosensors. Biological molecules interacting with carbon nanotubes provide them with specific chemical handles that would make several of these applications possible. Here we use phage display to identify peptides with selective affinity for carbon nanotubes. Binding specificity has been confirmed by demonstrating direct attachment of nanotubes to phage and free peptides immobilized on microspheres. Consensus binding sequences show a motif rich in histidine and tryptophan, at specific locations. Our analysis of peptide conformations shows that the binding sequence is flexible and folds into a structure matching the geometry of carbon nanotubes. The hydrophobic structure of the peptide chains suggests that they act as symmetric detergents.  相似文献   

12.
Zheng GP  Zhuang HL 《Nanotechnology》2008,19(32):325701
Spin-polarized density functional theory is employed to investigate the mechanical and magnetic properties of a (5, 5) carbon nanotube (CN) with a mono-vacancy. It is found that the magnetic properties of a defective CN can be modified by applied uniaxial tensile strain. The effects of uniaxial strains on the magnetic properties are related to the stretched bonds in the defective CN, and the effect of a mixture of sp(2) and sp(3) hybridization on the magnetism is investigated. Furthermore, because of the strong magneto-mechanical coupling between the defective CN and metal, the mechanical properties of the defective (5, 5) CN are found to be significantly alternated by the substitution of metal atoms to its vacancy sites. Such strong coupling among magnetic moment, spin-dependent transport, and mechanical deformation in a defective CN could be beneficial in some potential applications of CNs in spintronic devices and metal matrix composites.  相似文献   

13.
The stability of open edged multi-walled carbon nanotubes has been investigated by using in situ high resolution transmission electron microscopy at elevated temperatures. Formation of inter-shell structures was experimentally observed for the first time and attributed to a robust interaction between adjacent concentric shells (so-called lip-lip interaction). The fl uctuating behavior of the inter-shell structures suggests a mechanism by which the carbon atoms can pass in or out through the inter-shell edges during carbon nanotube growth or shrinkage processes. This article is published with open access at Springerlink.com  相似文献   

14.
Weng CH  Su HC  Yang CS  Shin KY  Leou KC  Tsai CH 《Nanotechnology》2006,17(22):5644-5651
Here we present a method to synthesize single-walled carbon nanotubes (SWNTs) selectively suspended on tips of silicon-based nanostructure (Si-ns) templates. The Si-ns templates vertically aligned to the substrates are fabricated via an anisotropic etch process using reactive hydrogen plasmas, in which the etch-resistive nanomasks are the nanosized particles formed by thermal annealing of multi-layered catalytic thin films. After plasma etching, the nanosized self-masks remaining at the tips of the Si-ns directly serve as the catalysts for SWNT growth by thermal chemical vapour deposition. Consequently, the synthesized SWNTs are selectively suspended on the tips of the Si-ns, as revealed by characterizations using scanning electron microscopy and resonance Raman spectroscopy. This methodology provides a simple and straightforward approach to assemble two different nanomaterials, i.e., Si-ns and suspended SWNTs, together as a building block for constructing nanodevices for possible applications.  相似文献   

15.
The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance and other many-body phenomena in correlated-electron materials is the subject of intense research at present. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, presents formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa(2)Cu(3)O(7) (YBCO) and the colossal-magnetoresistance compound La(2/3)Ca(1/3)MnO(3) that suggests a new approach to this problem. We find that a rotational mode of the MnO(6) octahedra in La(2/3)Ca(1/3)MnO(3) experiences pronounced superconductivity-induced line-shape anomalies, which scale linearly with the thickness of the YBCO layers over a remarkably long range of several tens of nanometres. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.  相似文献   

16.
There are several advantages of growing carbon nanotubes (CNTs) directly on bulk metals, for example in the formation of robust CNT-metal contacts during growth. Usually, aligned CNTs are grown either by using thin catalyst layers predeposited on substrates or through vapour-phase catalyst delivery. The latter method, although flexible, is unsuitable for growing CNTs directly on metallic substrates. Here we report on the growth of aligned multiwalled CNTs on a metallic alloy, Inconel 600 (Inconel), using vapour-phase catalyst delivery. The CNTs are well anchored to the substrate and show excellent electrical contact with it. These CNT-metal structures were then used to fabricate double-layer capacitors and field-emitter devices, which demonstrated improved performance over previously designed CNT structures. Inconel coatings can also be used to grow CNTs on other metallic substrates. This finding overcomes the substrate limitation for nanotube growth which should assist the development of future CNT-related technologies.  相似文献   

17.
For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 °C. Raman spectroscopy indicates that the CNTs are of high quality and the IG/ID ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the β-tricalcium phosphate via dehydroxylation.  相似文献   

18.
Lee SW  Jeong GH  Campbell EE 《Nano letters》2007,7(9):2590-2595
We present a technique for in situ Raman measurements of suspended individual single-walled carbon nanotubes (SWNTs) under strain. We observe a strong change in the radial breathing mode intensity with increasing strain as the nanotube moves out of (or into) resonance, and for strain greater than approximately 2%, there is a clear irreversible upshift in the G-mode frequencies accompanied by an increase in intensity of a broad peak at a position associated with the D mode. For lower strain, the G-mode peaks (A1, E1, and E2) do not change significantly in position but change in relative intensity.  相似文献   

19.
The experimental observation of phonon renormalization in high-Tc superconductors gives clear evidence for the action of electron-phonon coupling. But in spite of the estimated coupling strength 1–3, these effects do not allow for a unique identification of the coupling mechanism. This situation is contrasted with that for the low-Tc superconductors where tunneling spectroscopy provides a hard proof for electron pairing via phonons.  相似文献   

20.
Multi-wall Carbon Nanotube (CNT) emitters were tested in a combined diode-RF electron gun. Field emission of the nanotubes was observed at 5-30 MV/m, using a 250 ns FWHM long pulse with a peak voltage of 80-470 kV. The field emission threshold is compatible with that found from previous DC testing. We have extracted from a continuous field emitter up to a nanoCoulomb of charge and measured an emittance of 4 mm mrad with a 2 pC electron beam. The total charge emission during RF operation, using the 1.5 GHz, 2 cell RF structure, was found dependent on its period. RF operation showed that back bombarding electrons with up to 5 MeV did not impair the emission stability of the CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号