首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifteen-day-old rats divided into two groups were given [1-14C]acetate or [U-14C] glucose by intracranial injection and were sacrificed after 1 hr. Analysis of lipids from the two groups showed differences in the incorporation of radioactivity in the polar lipids and cholesterol. Analysis of brain fatty acid showed that whereas radioactivity from acetate was incorporated into saturated, monoand polyunsaturated fatty acids, the radioactivity from [U-14C] glucose was found only in 16∶0, 18∶0, and 18∶1. No radioactivity was found in polyunsaturated fatty acids even after concentration of this fraction by AgNO3:SiO2 thin layer chromatographic method. This difference is discussed in hypothetical terms of nonhomogeneous acetyl CoA pool, formation of acetyl CoA from glucose exclusively inside the mitochondria, and activation of injected acetate to acetyl CoA.  相似文献   

2.
Laverroux S  Glasser F  Gillet M  Joly C  Doreau M 《Lipids》2011,46(9):843-850
In ruminants, cis and trans C18:1 isomers are intermediates of fatty acid transformations in the rumen and their relative amounts shape the nutritional quality of ruminant products. However, their exact synthetic pathways are unclear and their proportions change with the forage:concentrate ratio in ruminant diets. This study traced the metabolism of vaccenic acid, the main trans C18:1 isomer found in the rumen, through the incubation of labeled vaccenic acid with mixed ruminal microbes adapted to different diets. [1-13C]trans-11 C18:1 was added to in vitro cultures with ruminal fluids of sheep fed either a forage or a concentrate diet. 13C enrichment in fatty acids was analyzed by gas-chromatography-mass spectrometry after 0, 5 and 24 h of incubation. 13C enrichment was found in stearic acid and in all cis and trans C18:1 isomers. Amounts of 13C found in fatty acids showed that 95% of vaccenic acid was saturated to stearic acid after 5 h of incubation with the concentrate diet, against 78% with the forage diet. We conclude that most vaccenic acid is saturated to stearic acid, but some is isomerized to all cis and trans C18:1 isomers, with probably more isomerization in sheep fed a forage diet.  相似文献   

3.
Octadecapentaenoic acid (all-cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U-14C] 18∶5n−3 methyl ester or [U-14C]18∶4n−3 (octadecatetraenoic acid; all-cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3 , and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all-cis δ6,9,12,15–18∶5 (2-trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all-cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all-cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all-cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2-trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2-trans 18∶5n−3 intermediate generated by a Δ3, Δ2-enoyl-CoA-iso-merase acting on 18∶5n−3. Thus, 2-trans 18∶5n−3 is implicated as a common intermediate in the β-oxidation of both 18∶5n−3 and 18∶4n−3.  相似文献   

4.
Natarajan  V.  Schmid  H. H. O. 《Lipids》1977,12(10):872-875
A mixture ofcis-9-[1-14C] octadecenol and [1-14C] docosanol was injected into the brains of 19-day-old rats, and incorporation of radioactivity into brain lipids was determined after 3, 12, and 24 hr. Both alcohols were metabolized by the brain but at different rates; each was oxidized to the corresponding fatty acid, but oleic acid was more radily incorporated into polar lipids. Substantial amounts of radioactivity were incorporated into 18∶1 alkyl and alk-1-enyl moieties of the ethanolamine phosphoglycerides and into 18∶1 alkyl moieties of the choline phosphoglycerides. Even after the disappearance of the 18∶1 alcohol from the substrate mixture (12 hr), the 22∶0 alcohol was not used to any measurable extent for alkyl and alk-1-enyl glycerol formation.  相似文献   

5.
Placental transport of 9-trans [1-14C] octadecenoic (elaidic) and 9-trans,12-trans [1-14C] octadecadienoic (linoelaidic) acids was demonstrated in rats. On the 18th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparison, 9-cis [1-14C] octadecenoic (oleic) or 9-cis,12-cis [1-14C] octadecadienoic (linoleic) acid also was injected into the maternal circulation of rats. All animals were sacrificed 1 hr following injection. Lipid composition and distribution of label were determined in maternal plasma, placental and fetal tissues. Differences in specific activities of plasma, placental and fetal total lipids indicated a decreasing concentration gradient for bothcis andtrans isomers of octadecenoic and octadecadienoic acids. Distribution of radioactivity in various lipid components was determined by thin layer chromatography. Irrespective of the label, the highest percentage of total radioactivity was carried by triglycerides (TG) in maternal plasma (∼60–80%), and was incorporated mainly in phospholipids (PL) of fetal tissues (∼50–60%). A nearly equal distribution of the label was found between PL and TG of placental lipids (∼40%). Radioactivity of fatty acid methyl esters (FAME) determined by radiogas liquid chromatography indicated that after injection of linoelaidate, radioactivity of maternal plasma, placental and fetal tissue FAME was associated only witht,t-18∶2. Following injection of elaidate, all the radioactivity in placental FAME was associated witht-18∶1; however, in fetal tissues, the label was distributed between 16∶0 andt-18∶1. These findings suggest that, in contrast to linoelaidic acid, rat fetal tissues can metabolize elaidic acid via β oxidation to form acetyl CoA and palmitic acid.  相似文献   

6.
The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.  相似文献   

7.
Soon Ng 《Lipids》1985,20(11):778-782
The13C NMR spectrum of the carbonyl carbons of the acyl groups of triacylglycerols of palm oil has been shown to give the composition of saturated, oleic and linoleic acyl groups at the 1,3-positions and at the 2-position of the glycerol moiety. Except for the lack of differentiation of the saturated fatty acids, the13C NMR technique provides the same information as the tedious enzymatic hydrolysis cum fatty acid analysis. The carbonyl carbon of the linolenic acyl group (18∶3,[cis, cis, cis]-9, 12, 15) has a chemical shift which is only 0.005 ppm to low frequency of that of the linoleic acyl group (18∶2,[cis, cis]-9, 12), so that the two resonances may not be distinguishable (or resolved) even at a high magnetic field.  相似文献   

8.
When [1-14C], [U-14C], and [16-14C]palmitate were oxidized by isolated rat hepatocytes, there was a differential distribution of label as a percent of total oxidized products, such that14CO2 from [1-14C]>[U-14C]>[16-14C]-palmitate and acid-soluble radioactivity from [16-14C]>[U-14C]>[1-14C]palmitate. The oxidation of [2,3-14C]succinate to14CO2 by isolated hepatocytes was only 9.1% of that from [1,4-14C]succinate, demonstrating that the differences in distribution of labeled products are in part due to less14CO2 production from label in the even carbon positions entering the citric acid cycle. Apparent total ketone body production from [16-14C]palmitate was markedly higher than [1-14C], and [U-14C]palmitate. In addition, the14C-acetone:14CO2 ratio derived from decarboxylation of labeled acetoacetate from [1-14C]palmitate was less than 1 and positively correlated to the rate of fatty acid oxidation in hepatocytes. These findings indicate that the known preferential incorporation of the omega-C2 unit of fatty acids into14C-ketone bodies also contributed to the differential distribution of labeled products and that this contribution was greatest at the lower rates of fatty acid oxidation. In isolated mitochondria, the distribution of label to14CO2 and acid-soluble radioactivity from [1-14C], [U-14C] and [16-14C]palmitate was qualitatively similar to that seen with hepatocytes. The distribution of label from [1-14C]acetylcarnitine to14CO2 and14C-ketone bodies by mitochondria was identical to that observed from [1-14C]palmitate, indicating that the higher rates of14CO2 production from [1-14C]palmitate cannot be explained by a preferential oxidation in the citric acid cycle of either extramitochondrial acetyl-CoA (generated in peroxisomes) or the carboxyl terminal of the fatty acid. As shown by others in cell-free systems, we observed that the total oxidation of [16-14C]palmitate by hepatocytes and mitochondria was significantly less than [1-14C] and [U-14C]palmitate, suggesting either incomplete mitochondrial β-oxidation or incomplete degradation of peroxisomal oxidation products. The data indicate that this incomplete oxidation does not, however, contribute to the differential distribution of label to oxidized products.  相似文献   

9.
Methyld 8- and [1-13C] 5,8,11,14-eicosatetraenoate (arachidonate) were prepared from a common synthetic precursor, 4,7,10,13-nonadecatetrayn-1-ol. The purified products were characterized by gas chromatography-mass spectrometry. Mass spectra oft-butyldimethylsilyl esters ofd 8-and [1-13C]-arachidonic acid showed a most intense [M-57]+ peak at high mass. The isotopic purity of methyl [1-13C] arachidonate was 99% and that of methyld 8-arachidonate was 56%. Whend 8-arachidonic acid was prepared by direct deuteration of 5,8,11,14-eicosatetraynoic acid, the isotopic purity of the sample was 86%.  相似文献   

10.
C. H. Tsai  J. E. Kinsella 《Lipids》1982,17(12):848-852
Suspension cell cultures of cocoa bean rapidly incorporated palmitic, stearic, oleic and linoleic acids into cellular lipids. Thus, 75 and 20% of [1-14C] palmitic acid was incorporated into polar lipids and triglycerides, respectively, after 48 hr. When [1-14C] oleic and [1-14C] linoleic acid were added separately, polar lipids consistently contained most of the radioactive fatty acids. Ca. 60% of the stearic acid accumulated as unesterified fatty acid in the cells. Palmitic and stearic acid were not desaturated, but oleic acid and linoleic acid were further desaturated. The kinetics of conversion of oleic acid and linoleic acid suggested a sequential desaturation pathway of 18∶1→18∶2→18∶3 in cocoa bean cell suspensions.  相似文献   

11.
Fatty acid carbons are well-resolved in13C nuclear magnetic resonance (NMR) spectra of lipid extracts, but application of this methodology to the metabolism of13C-labelled fatty acids has not yet been reported. In the present study,13C NMR was used to monitor the presence of 98% [U-13C]eicosapentaenoic acid (EPA) in liver and carcass lipids 24 h after it had been injected into the stomach of a rat. Natural abundance13C NMR spectra of liver total fatty acid extracts were obtained from four control rats for comparison. At 24 h post-injection, quantitative high resolution13C NMR showed13C enrichment in liver fatty acid extracts was present mainly at olefinic and at the n−1 to n−4 carbons, but13C signal intensities for C−1 to C−4 of [U-13C]EPA were markedly reduced or absent. Small13C resonances, possibly indicative of some13C incorporation into docosahexaenoic acid and saturated or monounsaturated fatty acids, were present in spectra of liver fatty acids. Liver and carcass fatty acid composition was similar in both the controls and the EPA-injected rat, suggesting little accumulation of the injected [U-13C]EPA after 24 h. We conclude that the carbon-specific data provided by13C NMR of lipid extracts may be useful in monitoring the fate of individual carbons during tracer studies using13C-labelled fatty acids.  相似文献   

12.
Hepatic metabolism of the two main isomers of CLA (9cis-11 trans, 10trans-12cisC18∶2) was compared to that of oleic acid (representative of the main plasma FA) in 16 rats by using the in vitro method of incubated liver slices. Liver tissue samples were incubated at 37°C for 17h under an atmosphere of 95% O2/5%CO2 in a medium supplemented with 0.75 mM of FA mixture (representative of circulating nonesterified FA) and with 55 μM [1-14C]9cis-11 trans C18∶2, [1-14C]10trans-12cis C18∶2, or [1-14C]oleate. The uptake of CLA by hepatocytes was similar for both isomers (9%) and was three times higher (P<0.01) than for oleate (2.6%). The rate of CLA isomer oxidation was two times higher (49 and 40% of incorporated amounts of 9cis-11 trans and 10trans-12 cis, respectively) than that of oleate (P<0.01). Total oxidation of oleate and CLA isomers into [14CO2] was low (2 to 7% of total oxidized FA) compared to the partial oxidation (93 to 98%) leading to the production of [14C] acid-soluble products. CLA isoemrs escaping from catabolism were both highly desaturated (26.7 and 26.8%) into conjugated 18∶3. Oleate and CLA isomers were mainly esterified into neutral lipids (30%). They were slowly secreted as parts of VLDL particles (<0.4% of FA incorporated into cells), the extent of secretion of oleate and of 10trans-12 cis being 2.2-fold higher than that of 9cis-11 trans (P<0.02). In conclusion, this study clearly showed that both CLA isomers were highly catabolized by hepatocytes, reducing their availability for peripheral tissues. Moreover, more than 25% of CLA escaping from catabolism was converted into conjugated 18∶3, the biological properties of which remain to be elucidated.  相似文献   

13.
The incorporation of [1-14C]18∶3n−3, (LNA) and [1-14C]-22∶6n−3 (DHA), and the metabolismvia the desaturase/elongase pathways of [1-14C]LNA, and [1-14C]20∶5n−3 (EPA) were studied in brain cells from newly-weaned (1-month-old) and 4-month-old turbot. The rank order of the extent of net incorporation of both LNA and DHA into glycerophospholipids was total diradyl glycerophosphocholines (CPL)> total diradyl glycerophosphoethanolamines (EPL)> phosphatidylserine (PS) and phosphatidylinositol (PI) and was independent of the polyunsaturated fatty acid added, the age of the fish and the time of incubation. However, the rate of incorporation of LNA into total lipid, CPL, EPL and PS was significantly greater than the rate of incorporation of DHA, and there was a significantly greater amount of DHA incorporated into EPL than LNA. There was no significant difference between the amounts of LNA and DHA incorporated into total lipid, CPL, PS and PI. Therefore, little preferential uptake and incorporation of DHA into brain cells was apparent. In 24-h incubations, on average 1.1% and 8.5% of radioactivity from [1-14C]LNA and [1-14C]EPA, respectively, were recovered in the DHA fraction. Therefore, LNA cannot contribute significantly to brain DHA levels in the turbot but EPA can. There were no significant differences between the amounts of radioactivity from either [1-14C]LNA or [1-14C]EPA recovered in the individual products/intermediates of the desaturase pathways in brain cells from 30-day-old and 120-day-old turbot.  相似文献   

14.
Coniglio  J. G.  Sharp  J. 《Lipids》1989,24(1):84-85
The conversion of [14C]linoleate to [14C]arachidonate by rat Sertoli cells was established by use of primary cultures. Most of the14C from [1-14C]linoleate was located in C-3 of the synthesized arachidonate, indicating that the labeled tetraene had originated largely by elongation and desaturation of the intact labeled substrate rather than by mere addition of14C-acetate generated by bio-oxidation of the radioactive substrate to an already existing 18-carbon precursor. Although a relatively small amount of14C was present in 18∶3ω6 and a relatively large amount of14C was present in 20∶2, it was not possible from these data to establish the relative importance of 20∶2 in the biosynthesis of arachidonic acid in rat Sertoli cells.  相似文献   

15.
The biosynthesis of R-octane-1’3-diol and R-5(Z)-octene-1’3-diol’ two natural antimicrobial agents in apples and pears’ was investigated in stored apples after application of [9’10’12’13-3H]linoleic acid’ [9’10’12’13’15’16-3H]linolenic acid’ [1-14C]linoleic acid’ [U-14C]oleic acid’ lipoxygenase-derived metabolites of [9’10’12’13-3H]linoleic acid’ 13C18-labeled linoleic acid hydroperoxides’ and 2H-labeled octanol derivatives. Analysis of the products and quantification of incorporation and labeling pattern were achieved by high-performance liquid chromatography-radiodetection’ capillary gas chromatography (GC)-isotope ratio mass spectrometry’ and GC-mass spectrometry analysis. Almost all the applied precursors were partly transformed into R-octane-1’3-diol. Linoleic acid derivatives’ still containing the 12’13 cis double bond’ and octanol derivatives oxy-functionalized at carbon 3 were the most efficient precursors of the 1’3-diol. The data imply that R-octane-1’3-diol is generated in stored apples in the course of the β-oxidation from R-3-hydroxy-octanoyl-SCoA originating from 2-cis-octenoyl-SCoA by enoyl-CoA hydratase. In an analogous fashion’ R-5(Z)-octene-1’3-diol is formed from the unsaturated intermediate.  相似文献   

16.
Our objective was to develop a suitable probe to study metabolism of polyunsaturated fatty acids by 13C nuclear magnetic resonance (NMR) in the suckling rat pup. [3-13C] γ-Linolenic acid was chemically synthesized, and a 20 mg (Experiment 1) or 5 mg (Experiment 2) dose was injected into the stomachs of 6–10-day-old suckling rat pups that were then killed over a 192 h (8 d) time course. 13C NMR showed that 13C in γ-linolenate peaked in liver total lipids by 12-h post-dosing and that [5-13C]-arachidonic acid peaked in both brain and liver total lipids 48–96 h post-dosing. 13C enrichment in brain γ-linolenic acid was not detected by NMR, but gas chromatography-combustion-isotope ratio mass spectrometry showed that its mass enrichment in brain phospholipids at 48–96 h post-dosing was 1–2% of that in brain arachidonic acid. 13C was present in liver and brain cholesterol and in perchloric acid-extractable water-soluble metabolites in the brain, liver and carcass. We conclude that low but measurable amounts of exogenous γ-linolenic acid do access the suckling rat brain in vivo. The slow time course of [5-13C] arachidonic acid appearance in the brain suggests most of it was probably transported there after synthesis elsewhere, probably in the liver. Some carbon from γ-linolenic acid is also incorporated into lipid products other than n−6 long-chain polyunsaturated fatty acids.  相似文献   

17.
Various nutritional studies on CLA, a mixture of isomers of linoleic acid, have reported the occurrence of conjugated long-chain PUFA after feeding experimental animals with rumenic acid, 9c,11t–18∶2, the major CLA isomer, probably as a result of successive desaturation and chain elongation. In the present work, in vitro studies were carried out to obtain information on the conversion of rumenic acid. Experiments were first focused on the in vitro Δ6-desaturation of rumenic acid, the regulatory step in the biosynthesis of long-chain n−6 PUFA. The conversion of rumenic acid was compared to that of linoleic acid (9c,12c–18∶2). Isolated rat liver microsomes were incubated with radiolabeled 9c,12c–18∶2 and 9c,11t–18∶2 under desaturation conditions. The data indicated that [1-14C]9c,11t–18∶2 was a poorer substrate for Δ6-desaturase than [1-14C]-9c,12c–18∶2. Next, in vitro elongation of 6c,9c,11t–18∶3 and 6c,9c,12c–18∶3 (γ-linolenic acid) was investigated in rat liver microsomes. Under elongation conditions, [1-14C]6c,9c,11t–18∶3 was 1.5-fold better converted into [3-14C]8c,11c,13t–20∶3 than [1-14C]6c,9c,12c–18∶3 into [3-14C]8c,11c,14c–20∶3. Finally, in vitro Δ5-desaturation of 8c,11c,13t–20∶3 compared to 8c,11c,14c–20∶3 was investigated. The conversion level of [1-14C]8c,11c,13t–20∶3 into [1-14C]5c,8c,11c,13t–20∶4 was 10 times lower than that of [1-14C]8c,11c,14c–20∶3 into [1-14C]5c,8c,11c,14c–20∶4 at low substrate concentrations and 4 times lower at the saturating substrate level, suggesting that conjugated 20∶3 is a poor substrate for the Δ5-desaturase.  相似文献   

18.
Mosley EE  McGuire MA 《Lipids》2007,42(10):939-945
There is limited methodology available to quantitatively assess the activity of the Δ9-desaturase enzyme in vivo without chemically inhibiting the enzyme or using radioactively labeled substrates. The objective of these experiments was to develop methodology to determine the incorporation and desaturation of 13C-labeled fatty acids into milk lipids. In a preliminary experiment, 3.7 g [1-13C]myristic acid ([1-13C]14:0), 19.5 g [1-13C]palmitic acid ([1-13C]16:0), 20.0 g [1-13C]stearic acid ([1-13C]18:0) were combined and infused into the duodenum of a cow over 24 h. In a following experiment, 5.0 g [1-13C]14:0, 40.0 g [1-13C]16:0, and 50.0 g [1-13C]18:0 were infused into the abomasums of separate cows as a bolus over 20 min or continuously over 24 h. Milk fat was extracted using chloroform:methanol. Fatty acids were methylated, and fatty acid methyl esters (FAME) were converted to dimethyl disulfide derivatives (DMDS). The FAME and DMDS were analyzed by gas chromatography mass spectrometry. In the preliminary experiment, 13C enrichment in 14:0 but not 16:0 or 18:0 was observed. When dosage amounts were increased in the following experiment, peak enrichments from the bolus infusion were observed at 8 h. Enrichments for continuous infusion peaked at 16 h for 14:0 and 18:0, and at 24 h for 16:0. The Δ9-desaturase products of these fatty acids were estimated to be 90% of cis-9 14:1, 50% of cis-9 16:1, and 59% of cis-9 18:1. This study demonstrates that 13C-labeled fatty acids may be utilized in vivo to measure the activity of the Δ9-desaturase enzyme.  相似文献   

19.
Fifteen-day-old rats were divided into three groups: one group received an intracerebral injection of 5 μ Ci of 9-trans, 12-trans [1-14C] octadecadienoic acid; the second group was given 5 μCi of the same compound plus an equal wt of nonradioactive allcis arachidonic acid; the third group was given 5 μCi of 9-trans [1-14C] octadecenoic acid. All animals were sacrificed 8 hr after injection. Glycerophosphocholine (GPC) was isolated and partically deacylated with phospholipase A2 fromCrotalus Adamanteus venom. The results of this study were as follows: 1) aftert [1-14C] 18∶1 injection, there was twice as much radioactivity in the 1-position as in the 2-position; 2) whentt [1-14C] 18∶2 was injected, more than 90% of the total radioactivity was found in the 2-position; 3) followingtt[1-14C]-18∶2 +nonradioactive arachidonate injection, ca. 75% of the total radioactivity still remained in the 2-position; and 4) all of the injected [1-14C]-tracers showed evidence of undergoing β-oxidation to form acetyl-CoA, which was converted to radioactive palmitate. The possibility is discussed that the observed distribution pattern of the injected radioactive tracers may be attributed to tissue metabolic specificity. Ramifications of the deposition of dietarytrans fatty acids in the brain during the developmental stage of the central nervous system are also discussed.  相似文献   

20.
Differences in the positional incorporation of 9-trans[1-14C] octadecenoic (elaidic) and 9-trans,12-trans[1-14C] octadecadienoic (linoelaidic) acids in fetal lecithin of rats were demonstrated. On the 20th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparative purposes, 9-cis[1-14C] octadecenoic (oleic) or 9-cis,12-cis[1-14C] octadecadienoic (linoleic acid) was injected into the maternal circulation of rats. Animals were killed 6 hr later. Distribution of label in total lipids and phospholipids (PL) of fetal tissue was measured by TLC. Irrespective of the label, the highest percentage of total radioactivity was associated with PL-59 to 67%. Within PL, the major portion of radioactivity was found in choline phosphoglycerides (CPG)-53 to 67%, and in ethanolamine phosphoglycerides (EPG)-18 to 33%. While linoelaidic acid was predominantly esterified in the 2-position of CPG, elaidic acid was nearly equally distributed between positions 1 and 2 of lecithin. Distribution of radioactivity within fatty acid methyl esters (FAME) of CPG measured by radio-GLC suggested that oleic and possibly linoleic acids may be converted to nervonic and arachidonic acid, respectively, in the rat by the 20th day of gestation. Following injection of elaidate, radioactivity of FAME was distributed between palmitate and elaidic acid indicating that rat fetal tissue may metabolize elaidic acid via β-oxidation. In contrast, following injection of linoelaidate, radioactivity of FAME was primarily associated withtt-18∶2, suggesting little biotransformation to other fatty acids by fetal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号