首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isothermal oxidation of pure CVD SiC and Si3N4 has been studied for 100 h in dry, flowing oxygen from 1200° to 1600°C in an alumina tube furnace. Adherent oxide formed at temperatures to 1550°C. The major crystalline phase in the resulting silica scales was alpha-cristobalite. Parabolic rate constants for SiC were within an order of magnitude of literature values. The oxidation kinetics of Si3N4 in this study were not statistically different from that of SiC. Measured activation energies were 190 kJ/mol for SiC and 186 kJ/mol for Si3N4. Silicon oxynitride did not appear to play a role in the oxidation of Si3N4 under the conditions herein. This is thought to be derived from the presence of ppm levels of sodium impurities in the alumina furnace tube. It is proposed that sodium modifies the silicon oxynitride, rendering it ineffective as a diffusion barrier. Material recession as a function of oxide thickness was calculated and found to be low. Oxidation behavior at 1600°C differed from the lower temperatures in that silica spallation occurred after exposure.  相似文献   

2.
An MgO-fluxed hot-pressed silicon nitride was fractured in four-point flexure between 1100° and 1325°C at three crosshead speeds. Above 1200°C, a temperature and strain-rate dependence of fracture stress and KIc was seen. Scanning and transmission electron microscopy were used to analyze as received and fractured material. A map of temperature vs crosshead speed was drawn showing regions where subcritical cracking was or was not observed and a transition region where microcracks and voids were detected.  相似文献   

3.
The fracture toughness of a sintered reaction-bonded silicon nitride was measured by the single-edge precracked beam and surface crack in flexure methods, which are two of the three complementary test methods in ASTM C 1421. Results were compared with chevron-notched beam results that were available from another source. Precracks ranged from tiny artificial flaws introduced by Knoop indentation to millimeter-long precracks in single-edge precracked beams. The fracture toughness values from the three methods were in good agreement at 5.6 MPa·m1/2.  相似文献   

4.
The measurement of axial and radial strains during uniaxial compression creep of SiCN shows the deformation to be entirely volumetric (as opposed to shear). Phenomenologically, the densification strain rate shows a good fit to an exponential stress dependence. This result is explained by the large volume of the diffusing molecular units in the oligomeric amorphous structure of SiCN, which causes the driving force to become nonlinear in stress. The size of the diffusing unit is estimated to be 1.2 nm.  相似文献   

5.
6.
The fracture toughness of four different silicon carbides was measured using single-edge precracked beam (SEPB) and indentation/strength techniques. Two were development grades with similar microstructures and chemistries, and yet exhibited different fracture modes. The grade that exhibited a predominantly intergranular fracture had an SEPB fracture toughness (6.4 MPa√m) 88% higher than the one that showed primarily a transgranular fracture (3.4 MPa√m). The higher fracture toughness was associated with a modest increase in average strength (25%), although there was a significant increase in the Weibull modulus (11–32). Fracture toughness at short crack lengths was assessed by an indentation method that used fracture strengths, crack lengths at fracture, and a new method of estimating the constant δ that characterizes the residual driving force of the plastic zones based on the stable growth of the indentation cracks from the initial ( c 0) to the instability ( c *) lengths. The results showed a rising crack-growth-resistance behavior for the grade exhibiting intergranular fracture, while the grade showing transgranular fracture had a flat crack-growth resistance. Tests on two commercial grades of silicon carbide showed similar behaviors associated with the respective fracture modes.  相似文献   

7.
Diamond particles were dispersed in silicon nitride, sintered at 6 GPa and 1600°C for 30 min, and heat-treated under vacuum at 1300°C to induce graphitization of the diamond. Improved fracture toughness values up to 7.5 MN/m312 were achieved for these composites. Stress-induced microcrack toughening is considered to be a plausible toughening mechanism. Comparisons with diamondlalumina ceramics were made.  相似文献   

8.
An alternative method to incorporate nanometer-sized silicon carbide (SiC) particles into silicon nitride (Si3N4) powder was proposed and investigated experimentally. Novolac-type phenolic resin was dissolved in ethanol and mixed with Si3N4 powder. After drying and curing, the resin was converted to reactive carbon via pyrolysis. Si3N4 powder was partially reduced carbothermally using the pyrolyzed carbon, and nanometer-sized SiC particles were produced in situ at 1530°-1610°C in atmospheric nitrogen. At temperatures <1550°C, the reduction rate was low and the SiC particles were very small; no SiC whiskers or barlike SiC was observed. At 1600°C, the reduction rate was high and the reaction was close to completion after only 10 min, with the appearance of SiC whiskers as well as curved, barlike, and equiaxial SiC, all of which were dozens of nanometers in diameter; this size is greater than that at observed temperatures <1550°C. A longer soaking time at 1600°C led to agglomerates. SiC particles were close to the surface of the Si3N4 particles. The SiC content could be adjusted by changing the carbon content before reduction and the reduction temperature. A reaction mechanism that involved the decomposition of Si3N4 has been proposed.  相似文献   

9.
10.
The fabrication of dense Si3N4/SiC nanocomposite materials that contained 2.5-30 wt% SiC via gas-pressure sintering and hot pressing was investigated. The SiC particles originated from admixed commercial SiC powders, SiCN powders produced by plasma synthesis, in situ reaction pyrolysis of carbon-coated Si3N4 particles, and pyrolysis of a polycarbosilazane-based SiCN precursor. Based on thermodynamic calculations, criteria for minimum liquid-phase decomposition during sintering were developed. The best sintering results were obtained for sintering cycles that observed this criteria. Materials that contained plasma-synthesized SiCN exhibited high strengths (835-995 MPa) and fracture toughness values (7.4-7.8 MPam1/2) at room temperature. Post-sintering thermal treatments led to a strength reduction.  相似文献   

11.
A composite consisting of 30 wt% SiC whiskers and a mullite-based matrix (mullite–32.4 wt% ZrO2–2.2 wt% MgO) was isothermally exposed in air at 1000°–1350°C, for up to 1000 h. Microstructural evolution in the oxidized samples was investigated using X-ray diffractometry and analytical transmission electron microscopy. Amorphous SiO2, formed through the oxidation of SiC whiskers, was devitrified into cristobalite at T ≥ 1200°C and into quartz at 1000°C. At T ≥ 1200°C, the reaction between ZrO2 and SiO2 resulted in zircon, and prismatic secondary mullite grains were formed via a solution–reprecipitation mechanism in severely oxidized regions. Ternary compounds, such as sapphirine and cordierite, also were found after long-term exposure at T ≥ 1200°C.  相似文献   

12.
The time-dependent strength of a fine-grained siliconized silicon carbide under stress at 1000° and 1100°C was investigated. Both macroscopic stress redistribution and localized flaw blunting were found to contribute to the strengthening of siliconized silicon carbide in bending tests. Strengthening through macroscopic stress redistribution involved nonlinear creep behavior which decreased the maximum outer fiber stress in the bending beam. Localized flaw blunting processes were determined to be operative in this material through artificial flaw tests using a prestress to prevent flaw healing. The sharp artificial cracks were blunted during static load tests by localized deformation processes at the crack tip.  相似文献   

13.
The effects of β-SiC whisker addition on the microstructural evolution and fracture toughness ( K IC) of hot-pressed SiC were investigated. Most of the whiskers added disappeared during the densifcation process by transformation into the α-phase. The remaining whiskers acted as nuclei for grain growth, resulting in the formation of large tabular grains around the whiskers. The tabular grains around the whiskers were believed to be formed because of the extreme anisotropy of the interfacial energy between α- and β-SiC. The K IC of the material was improved significantly by the whisker addition. The increase in the K IC was attributed to crack bridging followed by grain pullout as a result of the formation of tabular grains in a fine matrix.  相似文献   

14.
Quantitative texture analysis, which included calculation of the orientation distribution function, was used to demonstrate textures in hot-pressed and subsequently annealed silicon carbide (SiC). The results indicated that the hot pressing and annealing could produce strong textures in SiC. Grain rotation during hot pressing and preferred grain growth of plate-shaped α-SiC grains during annealing both apparently contributed to texture development in the SiC materials. The {111} pole figure in hot-pressed material (mostly ß-SiC) and the (004) pole figure in annealed material (mostly α-SiC) were consistent with the microstructural observations. The fracture toughness of hot-pressed and annealed material measured parallel to the hot-pressing direction (5.7 MPam1/2) was higher than that measured perpendicular to the hot-pressing direction (4.4 MPam1/2), because of the texture and the microstructural anisotropy.  相似文献   

15.
A carbothermal reaction of silica–phenol resin hybrid gels prepared from a two-step sol–gel process was conducted in atmospheric nitrogen. The gels were first pyrolyzed into homogeneous silica–carbon mixtures during heating and subsequently underwent a carbothermal reaction at higher temperatures. Using a gel-derived precursor with a C/SiO2 molar ratio higher than 3.0, Si3N4/SiC nanocomposite powders were produced at 1500°–1550°C, above the Si3N4–SiC boundary temperature. The predominant phase was Si3N4 at 1500°C, and SiC at 1550°C. The Si3N4 and SiC phase contents were adjustable by varying the temperature in this narrow range. The phase contents could also be adjusted by changing the starting carbon contents, or by its combination with varying reaction temperature. A two-stage process, i.e., a reaction first at 1550°C and then at 1500°C, offered another means of simple and effective control of the phase composition: the Si3N4 and SiC contents varied almost linearly with the variation of the holding time at 1550°C. The SiC was nanosized (∼13 nm, Scherrer method) formed via a solid–gas reaction, while the Si3N4 has two morphologies: elongated microsized crystals and nanosized crystallites, with the former crystallized via a gaseous reaction, and the latter formed via a solid–gas reaction. The addition of a Si3N4 powder as a seed to the starting gel effectively reduced the size of the Si3N4 produced.  相似文献   

16.
The long-term high-temperature cyclic oxidation (100 cycles, 104 h, 1500°C) of a Si3N4 material and a Si3N4/MoSi2 composite, both fabricated with Y2O3 as a sintering additive, was studied. Both materials exhibited similar oxidation rates because of surface SiO2 formation described by an almost parabolic law and a total weight gain of 3–4 mg/cm2 after 104 h. As a consequence of oxidation processes in the bulk, microstructural damage was found in the Si3N4 material. These effects were not observed in the composite. The remarkable microstructural stability observed offers the high potential of Si3N4/MoSi2 composites for long-term structural applications at elevated temperatures up to 1500°C.  相似文献   

17.
Eight laboratories in Germany, Japan, U.K., and U.S. participated in the VAMAS round robin. The fracture toughness of silicon nitride at room temperature and at 1200deg;C was measured by three methods: the single-edge V-notched beam (SEVNB), single-edge precracked beam (SEPB), and chevron notched beam (CNB). The obtained values show hardly any crosshead speed dependence, irrespective of test temperature and atmosphere. Results may have been influenced by a small amount of slow crack growth, but distinct R -curve behavior could not be detected within the scope of the tests. The values at 1200deg;C in N2 can be measured by the SEVNB and SEPB methods with small scatters. The oxidation of silicon nitride, caused by heating in air, increases the SEVNB and SEPB values. The CNB values are free from the effects of test temperature and atmosphere, but they show a large scatter between laboratories. However, the chevron V-notched beam (CVNB) method, which is an improved CNB method, shows values with a small scatter, irrespective of the measurement conditions. The SEVNB and SEPB measurements in N2 and the CVNB measurement under any conditions are recommended for the measurement of high-temperature fracture toughness.  相似文献   

18.
The oxidation behavior of zirconium diboride containing 30 vol% silicon carbide particulates was investigated under reducing conditions. A gas mixture of CO and ∼350 ppm CO2 was used to produce an oxygen partial pressure of ∼10−10 Pa at 1500°C. The kinetics of the growth of the reaction layer were examined for reaction times of up to 8 h. Microstructures and chemistries of reaction layers were characterized using scanning electron microscopy and X-ray diffraction analysis. The kinetic measurements, the microstructure analysis, and a thermodynamic model indicate that oxidation in CO–CO2 produced a non-protective oxide surface scale.  相似文献   

19.
Highly textured chemically vapor-deposited silicon carbide (CVD-SiC) thick films were oxidized and compared to single-crystal SiC and single-crystal silicon. The oxidation rates of the (111) face of the cubic CVD-SiC were the same as those of the (0001) face of the single-crystal SiC. Similarly, the opposite faces of the two materials, (     ) and (000     ), also oxidized at nominally the same rates. The (     ) and (000     ) faces oxidized much faster than their opposite (lll)/(0001) faces. Ellipsometry measurements and kinetic results implied that differences existed between the oxides that grew on the opposite faces. A regression method was developed to analyze the oxide thickness versus time versus temperature behavior of the specimens simultaneously. This technique was compared to typical methods for analyzing temperature-dependent processes and estimated temperature- dependent parameters (e.g., activation energy) and their errors more accurately.  相似文献   

20.
A high creep resistance at specified temperature and compressive stress was obtained in this investigation in the silicon nitride/silicon carbide composite with a nano–nano structure (nanosized SiC and Si3N4 in dual-phase mixture) by a novel synthesis method. Starting from an amorphous Si–C–N powder derived from pyrolysis of a liquid polymer precursor, nanocomposites with varied grain size were achieved. With yttria additive amount decreasing from 8 to 1 wt% and eventually to zero, the structure underwent a transition from micro-nano (nano-sized SiC included in sub-micron Si3N4) to nano–nano type. Nanocrystalline silicon nitride/silicon carbide ceramic composite with 30–50 nm grain size was synthesized without using sintering additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号